Enzymatic protein hydrolysates and ultrafiltered peptide fractions from Cowpea Vigna unguiculata L bean with in vitro antidiabetic potential

  • Eduardo Castañeda-Pérez
  • Karina Jiménez-Morales
  • Carlos Quintal-Novelo
  • Rosa Moo-Puc
  • Luis Chel-Guerrero
  • David Betancur-AnconaEmail author
Original Paper


Diabetes Mellitus (DM) is a disease that affects an increasing number of people worldwide consisting on a rise in blood sugars levels. Diabetes mellitus type 2 (DMT2) is the most common and accounts for 95% of cases. In this work, the antidiabetic potential of Cowpea (Vigna unguiculata L.) protein hydrolysates (PH) and ultrafiltered peptide fractions (UFPF) by means of the in vitro inhibition of the α-amylase, α-glucosidase, and dipeptidyl peptidase IV (DPP-IV) enzymes were analyzed. Their cytotoxicity was also assessed in healthy Vero cells lines to assess their safety as possible ingredients in food. The Cowpea proteins were hydrolyzed with Alcalase®-Flavourzyme® sequential system. Their highest inhibitory activities were: F > 10 kDa to inhibit α-amylase, F > 10 kDa and PH to inhibit α-glucosidase, and PH to inhibit DPP-IV. Their IC50 values were 31.58, 0.633, 1.81, and 2.06 mg protein per mL, respectively. In a second experiment, PHs and UFPFs were hydrolyzed with a pepsin–pancreatin sequential system and showed the following inhibitory activities: F1–3 kDa and F < 1 kDa to inhibit α-amylase, and F < 1 kDa to inhibit α-glucosidase. Their IC50 values were 65.79, 40.17, and 189.04 mg protein per mL, respectively. The degree of hydrolysis was extensive for all the PHs and the highest was obtained using the Alcalase®-Flavourzyme® sequential enzyme system. The PHs and UFPFs with the highest inhibitory activity of the α-amylase, α-glucosidase, and dipeptidyl DPP-IV enzymes did not show in vitro cytotoxicity activity in Vero Cells. Therefore, they are potential ingredients to produce functional food for patients with DMT2.


Antidiabetic potential Protein hydrolysates Peptide fractions Cowpea Vigna unguiculata



The authors thank the Consejo Nacional de Ciencia y Tecnología (CONACYT-México) and Red Temática de Farmoquímicos for their Project support to this publication. CONACYT is acknowledged for providing the MSc scholarship for the K. Jiménez and Fundación IMSS for research grant to R. Moo.


  1. 1.
    IDF, Diabetes atlas de la FID, 8a edn. (International Diabetes Federation, Mariakerke,Belgium, 2017)Google Scholar
  2. 2.
    L. Xu, Y. Li, Y. Dai, J. Peng, Pharmacol. Res. 130, 451–465 (2018)CrossRefGoogle Scholar
  3. 3.
    O. Power, A.B. Nongonierma, P. Jakeman, R.J. FitzGerald, Proc. Nutr. Soc. 73, 34–46 (2014)CrossRefGoogle Scholar
  4. 4.
    J.M. Awika, K.G. Duodu, J. Funct. Foods 38, 686–697 (2017)CrossRefGoogle Scholar
  5. 5.
    M.R. Segura-Campos, L.A. Chel-Guerrero, D.A. Betancur-Ancona, J. Sci. Food Agric. 90, 2512–2518 (2010)CrossRefGoogle Scholar
  6. 6.
    B. Grube, W.F. Chong, P.W. Chong, L. Riede, Obesity 22, 645–651 (2014)CrossRefGoogle Scholar
  7. 7.
    L. Chel-Guerrero, V. Pérez-Flores, D. Betancur-Ancona, G. Dávila-Ortiz, J. Agric. Food Chem. 50, 584–591 (2002)CrossRefGoogle Scholar
  8. 8.
    S. Kalra, J. Pak. Med. Assoc. 64, 474–476 (2014)Google Scholar
  9. 9.
    P.M. Nielsen, D. Petersen, C. Dambmann, J. Food Sci. 66, 642–646 (2001)CrossRefGoogle Scholar
  10. 10.
    M.J. Cho, N. Unklesbay, F.H. Hsieh, A.D. Clarke, J. Agric. Food Chem. 52, 5895–5901 (2004)CrossRefGoogle Scholar
  11. 11.
    L. Mojica, K. Chen, E.G. de Mejía, J. Food Sci. 80, H188–H198 (2015)CrossRefGoogle Scholar
  12. 12.
    D.B.A. Mitra, M. Manjunatha, Int. J. Adv. Pharm. Sci. 1, 75–85 (2010)Google Scholar
  13. 13.
    B. Ahrén, A. Schweizer, S. Dejager, E.B. Villhauer, B.E. Dunning, J.E. Foley, Diabetes Obes Metab 13, 775–783 (2011)CrossRefGoogle Scholar
  14. 14.
    M.M. Yust, J. Pedroche, J. Girón-Calle, J. Vioque, F. Millán, M. Alaiz, Food Chem. 85, 317–320 (2004)CrossRefGoogle Scholar
  15. 15.
    I. Camargo Filho, D.A.G. Cortez, T. Ueda-Nakamura, C.V. Nakamura, B. P. Dias Filho, Phytomedicine 15, 202–208 (2008)CrossRefGoogle Scholar
  16. 16.
    M.R. Segura-Campos, L.A. Chel-Guerrero, D. A. Betancur-Ancona. Process Biochem. 46, 864–872 (2011)CrossRefGoogle Scholar
  17. 17.
    J. Ruiz-Ruiz, G. Dávila-Ortíz, L. Chel-Guerrero, D. Betancur-Ancona, J. Food Biochem. 37, 26–35 (2013)CrossRefGoogle Scholar
  18. 18.
    E. Polanco-Lugo, G. Davila-Ortiz, D.A. Betancur-Ancona, L.A. Chel-Guerrero, Food Sci. Technol. 34, 441–448 (2014)CrossRefGoogle Scholar
  19. 19.
    J. Torruco-Uco, L. Chel-Guerrero, A. Martínez-Ayala, G. Dávila-Ortíz, D. Betancur-Ancona, LWT Food Sci. Technol. 42, 1597–1604 (2009)CrossRefGoogle Scholar
  20. 20.
    M.E. Oseguera-Toledo, E. Gonzalez de Mejia, S.L. Amaya-Llano, Food Res. Int. 76, 839–851 (2015)CrossRefGoogle Scholar
  21. 21.
    M. Segura-Campos, J. Ruiz-Ruiz, L. Chel-Guerrero, D. Betancur-Ancona, CYTA J. Food 11, 208–215 (2013)CrossRefGoogle Scholar
  22. 22.
    P.V. Sandoval, Doctoral Thesis, Universidad Autónoma de Yucatán (2015)Google Scholar
  23. 23.
    Y.Y. Ngoh, T.S. Lim, C.Y. Gan, Enzyme Microb. Technol. 89, 76–84 (2016)CrossRefGoogle Scholar
  24. 24.
    Y.Y. Ngoh, C.Y. Gan, Food Chem. 190, 331–337 (2016)CrossRefGoogle Scholar
  25. 25.
    H.J. Lee, H.S. Lee, J.W. Choi, K.S. Ra, J.M. Kim, H.J. Suh, J. Agric. Food Chem. 59, 11522–11525 (2011)CrossRefGoogle Scholar
  26. 26.
    I.M.E. Lacroix, E.C.Y. Li-Chan, J. Agric. Food Chem. 61, 7500–7506 (2013)CrossRefGoogle Scholar
  27. 27.
    A.B. Nongonierma, R.J. Fitzgerald, Peptides 39, 157–163 (2013)CrossRefGoogle Scholar
  28. 28.
    T. de Souza Rocha, L.M.R. Hernandez, Y.K. Chang, E.G. de Mejía, Food Res. Int. 64, 799–809 (2014)CrossRefGoogle Scholar
  29. 29.
    Y. Ren, K. Liang, Y. Jin, M. Zhang, Y. Chen, H. Wu, F. Lai, J. Funct. Foods 26, 439–450 (2016)CrossRefGoogle Scholar
  30. 30.
    M.E. Oseguera-Toledo, E. de Mejía, R. Reynoso-Camacho, A. Cardador-Martínez, S.L. Amaya-Llano, Nutrafoods 13, 147–157 (2014)CrossRefGoogle Scholar
  31. 31.
    R. Mora-Escobedo, MdelC. Robles-Ramírez, E. Ramón-Gallegos, R. Reza-Alemán, Plant Foods Hum. Nutr. 64, 271–278 (2009)CrossRefGoogle Scholar
  32. 32.
    A.J. Velarde-Salcedo, A. Barrera-Pacheco, S. Lara-González, A. Montero-Morán, A. Díaz-Gois, E.G. de Mejía, A.P. Barba de la Rosa. Food Chem. 136, 758–764 (2013)CrossRefGoogle Scholar
  33. 33.
    S. Lorey et al., Eur. J. Biochem. 270, 2147–2156 (2003)CrossRefGoogle Scholar
  34. 34.
    M.G. Kang, S.H. Yi, J.S. Lee, Mycobiology 41, 149–154 (2013)CrossRefGoogle Scholar
  35. 35.
    R.L. Freitas, A.R. Teixeira, R.B. Ferreira, J. Agric. Food Chem. 52, 1682–1687 (2004)CrossRefGoogle Scholar
  36. 36.
    Z. Yu, Y. Yin, W. Zhao, J. Liu, F. Chen, Food Chem. 135, 2078–2085 (2012)CrossRefGoogle Scholar
  37. 37.
    J. Girón-Calle, M. Alaiz, J. Vioque, Food Res. Int. 43, 1365–1370 (2010)CrossRefGoogle Scholar
  38. 38.
    P.H.K. Ngai, T.B. Ng, Peptides 25, 2063–2068 (2004)CrossRefGoogle Scholar
  39. 39.
    H.W. Jack, B.N. Tzi, Int. J. Biochem. Cell Biol. 37, 1626–1632 (2005)CrossRefGoogle Scholar
  40. 40.
    N.M. Ali, S.K. Yeap, H.M. Yusof, B.K. Beh, W.Y. Ho, S.P. Koh, M.P. Abdullah, N.B. Alitheen, K. Long, J. Sci. Food Agric. 96, 1648–1658 (2016)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2019

Authors and Affiliations

  1. 1.Facultad de Ingeniería QuímicaUniversidad Autónoma de Yucatán, Chuburná de Hidalgo InnMéridaMéxico
  2. 2.Unidad de Investigación Médica Yucatán, Unidad Médica de Alta Especialidad Hospital de Especialidades-1 MéridaInstituto Mexicano del Seguro SocialMéridaMéxico

Personalised recommendations