Advertisement

Journal of the Iranian Chemical Society

, Volume 16, Issue 8, pp 1735–1748 | Cite as

Comparison of MIL-101(Fe) and amine-functionalized MIL-101(Fe) as photocatalysts for the removal of imidacloprid in aqueous solution

  • Cihan Gecgel
  • Utku Bulut Simsek
  • Belgin Gozmen
  • Meral TurabikEmail author
Original Paper
  • 265 Downloads

Abstract

One of the attractive iron-based metal organic framework (MOF) MIL-101(Fe) (Material Institute Lavoisier, MIL) and amine-functionalized NH2-MIL-101(Fe) materials were synthesized by conventional solvothermal method and characterized by TGA (Thermo Gravimetric Analysis), SEM (Scanning Electron Microscopy), XRD (X-Ray Diffractograms), BET (Braunner Emmet Teller) and FTIR (Fourier Transform Infrared Spectroscopy). Characterization results indicated that MIL-101(Fe) materials have well defined morphology, good thermal stability, high surface area and also high porosity. These MOF materials were used as photocatalysts for photodegradation of a pesticide, imidacloprid (IMC). The response surface methodology (RSM) was applied in designing the IMC photodegradation experiments for evaluating the interactive effects of independent variables and determining the optimum condition. Central composite design as five independent variables such as initial MIL-101(Fe) concentration, initial IMC concentration, H2O2 concentration, pH and time were coded with low and high level and IMC removal percent was obtained as a response. As for the RSM results on the optimum photocatalytic condition, maximum IMC removal values were determined as 100% for the both catalysts in the end of the 30 min. The adsorption efficiencies of catalysts were also investigated and obtained results showed that amine-functionalized MIL-101(Fe) was the more effective sorbent than MIL-101(Fe).

Keywords

Metal organic frameworks (MOFs) MIL-101(Fe) Amine functionalization Photocatalyst Adsorption Response surface methodology (RSM) 

Notes

Funding

This work was supported by the research fund of Mersin University in Turkey under grant [2017-1-AP4-2224].

References

  1. 1.
    G. Liu, L. Li, D. Xu, X. Huang, X. Xu et al., Carbohydr. Polym. 175, 584–591 (2017)CrossRefGoogle Scholar
  2. 2.
    Y. Pi, X. Li, Q. Xia, J. Wu et al., Chem. Eng. J. 337, 351–371 (2018)CrossRefGoogle Scholar
  3. 3.
    M. Zhang, W. Zhou, T. Phan, K.A. Forrest et al., Angew. Chem. Int. Ed. 56, 11426–11430 (2017)CrossRefGoogle Scholar
  4. 4.
    S. Beatriz, T. Carlos, C. Joaquín, S. Claudia, Sep. Purif. Technol. 111, 72–81 (2013)CrossRefGoogle Scholar
  5. 5.
    P. Karthik, A. Pandikumar, M. Preeyanghaa, M. Kowsalya, B. Neppolian, Microchim. Acta 184, 2265–2273 (2017)CrossRefGoogle Scholar
  6. 6.
    J. Gordon, H. Kazemian, S. Rohani, Mater. Sci. Eng. C 47, 172–179 (2015)CrossRefGoogle Scholar
  7. 7.
    Q. Xie, Y. Li, Z. Lv, H. Zhou, X. Yang, J. Chen, H. Guo, Nat. Sci. Rep. 7, 3316 (2017)CrossRefGoogle Scholar
  8. 8.
    K. Leus, Y.Y. Liu, P.V.D. Voort, Catal. Rev. Sci. Eng. 56, 1–56 (2014)CrossRefGoogle Scholar
  9. 9.
    C. Gao, S. Chen, X. Quan, H. Yu, Y. Zhang, J. Catal. 356, 125–132 (2017)CrossRefGoogle Scholar
  10. 10.
    P. Serra-Crespo, E.V. Ramos-Fernandez, J. Gascon, F. Kapteijn, Chem. Mater. 23, 2565–2572 (2011)CrossRefGoogle Scholar
  11. 11.
    T. Hu, Q. Jia, S. He, S. Shan, H. Su, Y. Zhi, L. He, J. Alloys Compd. 727, 114–122 (2017)CrossRefGoogle Scholar
  12. 12.
    D.-X. Xue, Q. Wang, J. Bai, Coord. Chem. Rev. (2017)  https://doi.org/10.1016/j.ccr.2017.10.026 Google Scholar
  13. 13.
    A.J. Emerson, A. Chahine, S.R. Batten, D.R. Turner, Coord. Chem. Rev. 365, 1–22 (2018)CrossRefGoogle Scholar
  14. 14.
    P. Karthik, R. Vinoth, P. Zhang, W. Choi, E. Balaraman, B. Neppolian, ACS Appl. Energy Mater. (2018)  https://doi.org/10.1021/acsaem.7b00245 Google Scholar
  15. 15.
    R. Ahmad, N.M. Salem, H. Estaitieh, Chemosphere 78, 667–671 (2010)CrossRefGoogle Scholar
  16. 16.
    S. Samsidar, S.M. Siddiquee, Shaarani, Trends Food Sci. Technol. 71, 188–201 (2018)CrossRefGoogle Scholar
  17. 17.
    M.A. Radwan, M.S. Mohamed, Ecotoxcol. Environ. Saf. 95, 91–97 (2013)CrossRefGoogle Scholar
  18. 18.
    S. Baskaran, R.S. Kookana, R. Naidu, J. Chrom A. 787, 271–275 (1997)CrossRefGoogle Scholar
  19. 19.
    S. Malato, J. Caceres, A. Aguera, M. Mezcua, D. Hernando, J. Vial, A.R. Fernández-Alba Environ. Sci. Tech. 35, 4359–4366 (2001)CrossRefGoogle Scholar
  20. 20.
    K.A. Sumon, A.K. Ritika, E.T.H.M. Peeters, H. Rashid, R.H. Bosma, M.S. Rahman, M.K. Fatema, P.J. Van den Brink, Environ. Pollut. 236, 432–441 (2018)CrossRefGoogle Scholar
  21. 21.
    H.R. Ghalebi, S. Aber, A. Karimi, J. Mol. Catal. A Chem. 415, 96–103 (2016)CrossRefGoogle Scholar
  22. 22.
    S.G. Zhang, L.N. Li, S.G. Zhao, Z.H. Sun, J.H. Luo, Inorg. Chem. 54, 8375–8379 (2015)CrossRefGoogle Scholar
  23. 23.
    P.L. Feng, I.V.J.J. Perry, S. Nikodemski, B.W. Jacobs, S.T. Meek, M.D. Allendorf, J. Am. Chem. Soc. 132, 15487–15489 (2010)CrossRefGoogle Scholar
  24. 24.
    M.A. Bezerra, R.E. Santelli, E.P. Oliveira, L.S. Villar, L.A. Escaleira, Talanta 76, 965–977 (2008)CrossRefGoogle Scholar
  25. 25.
    R. Bruns, I. Scarmino, B. de, Baros neto, statistical design—chemometrics, 1st edn. (Elsevier, Amsterdam, 2008), p. 422Google Scholar
  26. 26.
    A.D.S. Barbosa, J.D. Fernandes, A.F. Peixoto, C. Freire, B. de Castro, C.M. Granadeiro, S.S. Balula, L. Cunha-Silva, Polyhedron 127, 464–470 (2017)CrossRefGoogle Scholar
  27. 27.
    M. Saikia, V. Kaichev, L. Saikia, RSC Adv. 6, 106856–106855 (2016)CrossRefGoogle Scholar
  28. 28.
    D. Jiang, L.L. Keenan, A.D. Burrows, K.J. Edler, Chem. Commun. 48, 12053–12055 (2012)CrossRefGoogle Scholar
  29. 29.
    S.S. Bayazit, S.T. Danalioglu, M. Abdel Salam, O. Kerkez, Environ. Sci. Pollut. Res. Int. 24, 25452–25461 (2017)CrossRefGoogle Scholar
  30. 30.
    D.K. Panchariya, R.K. Rai, S.K. Singh, E.A. Kumar, Mater. Today Proc. 4, 388–394 (2017)CrossRefGoogle Scholar
  31. 31.
    Y. Liu, P. Gao, C. Huang, Y. Li, Sci. China Chem. 58, 1553–1560 (2015)CrossRefGoogle Scholar
  32. 32.
    Y. Zang, J.S. Zhang, Y. Zhong, W. Zhu, Catal. Sci. Technol. 3, 20–44 (2013)CrossRefGoogle Scholar
  33. 33.
    C.P. Cabello, G. Berlier, G. Magnacca, P. Rumori, G.T. Palomino, Cryst. Eng. Comm. 17, 430–437 (2015)CrossRefGoogle Scholar
  34. 34.
    E.P. Barrett, L.G. Joyner, P.P. Halenda, J. Am. Chem. Soc. 73, 373–380 (1951)CrossRefGoogle Scholar
  35. 35.
    S. Brunauer, P.H. Emmett, E. Teller, J. Am. Chem. Soc. 60, 309–319 (1938)CrossRefGoogle Scholar
  36. 36.
    M. Almáši, V. Zeleňáka, P. Palotaia, E. Beňováa, A. Zeleňáková, Inorg. Chem. Comm. 93, 115–120 (2018)CrossRefGoogle Scholar
  37. 37.
    W. Xiong, Z. Zeng, X. Li, G. Zeng, R. Xiao, Z. Yang, Y. Zhou, C. Zhang, M. Cheng, L. Hu, C. Zhou, L. Qin, R. Xu, Y. Zhang, Chemosphere 210, 1061–1069 (2018)CrossRefGoogle Scholar
  38. 38.
    K. Chamberlain, A.A. Evans, R.H. Bromilow, Pestic. Sci. 47, 265–271 (1996)CrossRefGoogle Scholar
  39. 39.
    M.J. Katz, S.Y. Moon, J.E. Mondloch, M.H. Beyzavi, C.J. Stephenson, J.T. Hupp, O.K. Farha, Chem. Sci. 6, 2286–2291 (2015)CrossRefGoogle Scholar
  40. 40.
    C.G. Silva, J.L. Faria, J. Photochem. Photobiol. A 155, 133–143 (2003)CrossRefGoogle Scholar
  41. 41.
    M. Fischer, Der Technischen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg. PhD Thesis (2017)Google Scholar
  42. 42.
    J. Noh, Y. Kim, H. Park, J. Lee, M. Yoon, M.H. Park, Y. Kim, M. Kim, J. Ind. Eng. Chem. 64, 478–483 (2018)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2019

Authors and Affiliations

  • Cihan Gecgel
    • 1
    • 2
  • Utku Bulut Simsek
    • 1
  • Belgin Gozmen
    • 1
    • 3
  • Meral Turabik
    • 1
    • 4
    Email author
  1. 1.Department of Nanotechnology and Advanced MaterialsMersin UniversityMersinTurkey
  2. 2.Advanced Technology Education Research and Application CenterMersin UniversityMersinTurkey
  3. 3.Department of Chemistry, Faculty of Science and LettersMersin UniversityMersinTurkey
  4. 4.Chemical Program, Technical Science Vocational SchoolMersin UniversityMersinTurkey

Personalised recommendations