Advertisement

Sonochemical synthesis, characterization, biological applications, and DFT study of new nano-sized manganese complex of azomethine derivative of diaminomaleonitrile

  • Nahid Zare
  • Abedien ZabardastiEmail author
  • Abdelnasser Mohammadi
  • Farideh Azarbani
  • Ali Kakanejadifard
Original Paper
  • 1 Downloads

Abstract

The characterization of a new, synthesized Mn(II) Schiff base complex of the [MnL2Cl]Cl type (where L = 2-((pyridine-4-yl)metheleneamino)-3-aminomaleonitrile) was carried out by FT-IR, UV–Vis, DRS, GC–Mass, photoluminescence spectroscopy (PL) and elemental analysis. The production of Mn3O4 nanoparticles using thermal decomposition and its spectral properties in the current study is being checked. The nano compounds were characterized by X-ray diffraction, scanning electron microscopy (SEM), and the X-ray energy-dispersive spectrometry analyses. Synthesized manganese oxide nanoparticles have a tetragonal structure with the average size of 25–150 nm. The results of SEM showed that the morphology of [MnL2Cl]Cl was rod-like while the morphology of the Mn3O4 was rod-like as well as spherical. Also, the metal complexes’ antibacterial and antifungal activities were evaluated. The results of the microbiology activities indicated that the metal compounds exhibited stronger microbiology efficiencies than the ligand did.

Keywords

Schiff base nano complex Nano rod Microbial applications AFM SEM NBO DFT 

References

  1. 1.
    D. Sabolová, M. Kožurková, T. Plichta, Z. Ondrušová, D. Hudecová, M. Šimkovič, H. Paulíková, A. Valent, Interaction of a copper(II)–Schiff base complexes with calf thymus DNA and their antimicrobial activity. Int. J. Biol. Macromol. 48, 319–325 (2011)Google Scholar
  2. 2.
    B. Biswas, N. Kole, M. Patra, S. Dutta, M. Ganguly, Synthesis, structural characterization and biological activity of a trinuclear zinc(II) complex: DNA interaction study and antimicrobial activity. J. Chem. Sci. 125, 1445–1453 (2013)Google Scholar
  3. 3.
    S. Kumar, D.N. Dhar, P. Saxena, Applications of metal complexes of Schiff bases—A review. J. Sci. Ind. Res. 68, 181–187 (2009)Google Scholar
  4. 4.
    D. Kumar, P. Gupta, A. Syamal, Syntheses, magnetic and spectral studies on polystyrene supported coordination compounds of bidentate and tetradentate Schiff bases. J. Chem. Sci. 117, 247–253 (2005)Google Scholar
  5. 5.
    A.M. Abu-Dief, I.M. Mohamed, A review on versatile applications of transition metal complexes incorporating Schiff bases. Beni-Suef Univ. J. Basic Appl. Sci. 4, 119–133 (2015)Google Scholar
  6. 6.
    Z. Kazemi, H.A. Rudbari, M. Sahihi, V. Mirkhani, M. Moghadam, S. Tangestaninejad, I. Mohammadpoor-Baltork, S. Gharaghani, Synthesis, characterization and biological application of four novel metal-Schiff base complexes derived from allylamine and their interactions with human serum albumin: experimental, molecular docking and ONIOM computational study. J. Photochem. Photobiol. B 162, 448–462 (2016)Google Scholar
  7. 7.
    F. Dwyer, E. Mayhew, E. Roe, A. Shulman, Inhibition of landschuetz ascites tumour growth by metal chelates derived from 3,4,7,8-tetramethyl-1,10-phenanthroline. Br. J. Cancer 19, 195 (1965)Google Scholar
  8. 8.
    A.N. Aziz, M. Taha, N.H. Ismail, E.H. Anouar, S. Yousuf, W. Jamil, K. Awang, N. Ahmat, K.M. Khan, S.M. Kashif, Synthesis, crystal structure, DFT studies and evaluation of the antioxidant activity of 3,4-dimethoxybenzenamine Schiff bases. Molecules 19, 8414–8433 (2014)Google Scholar
  9. 9.
    I. Okada, T. Fukuda, Y. Kuroda, K. Noguchi, K. Chiba, K. Kitano, Direct synthesis of bis(alkylamino)maleonitriles from alcohols and TMSCN with bi(OTf)3. Synthesis 49, 1301–1306 (2017)Google Scholar
  10. 10.
    Y. Ohtsuka, Chemistry of diaminomaleonitrile. 4. Nitrile hydration of the Schiff bases. J. Org. Chem. 44, 827–830 (1979)Google Scholar
  11. 11.
    T. Goslinski, Z. Dutkiewicz, M. Kryjewski, E. Tykarska, L. Sobotta, W. Szczolko, M. Gdaniec, J. Mielcarek, Experimental and computational study on the reactivity of 2,3-bis[(3-pyridylmethyl) amino]-2(Z)-butene-1,4-dinitrile, a key intermediate for the synthesis of tribenzoporphyrazine bearing peripheral methyl(3-pyridylmethyl) amino substituents. Monatshefte für Chemie Chem. Mon. 142, 599 (2011)Google Scholar
  12. 12.
    M.J. Fuchter, L.S. Beall, S.M. Baum, A.G. Montalban, E.G. Sakellariou, N.S. Mani, T. Miller, B.J. Vesper, A.J. White, D.J. Williams, Synthesis of porphyrazine-octaamine, hexamine and diamine derivatives. Tetrahedron 61, 6115–6130 (2005)Google Scholar
  13. 13.
    T. Goslinski, C. Zhong, M.J. Fuchter, C.L. Stern, A.J. White, A.G. Barrett, B.M. Hoffman, Porphyrazines as molecular scaffolds: flexible syntheses of novel multimetallic complexes. Inorg. Chem. 45, 3686–3694 (2006)Google Scholar
  14. 14.
    A.A. Aly, A.A. Hassan, S. Bräse, M.A.M. Gomaa, F.M. Nemr, Reaction of amidrazones with diaminomaleonitrile: synthesis of 4-amino-5-iminopyrazoles. J. Heterocycl. Chem. 54, 480–483 (2017)Google Scholar
  15. 15.
    H.-R. Zheng, J.-S. Zhang, X.-C. Wang, X.-Z. FU, Modification of carbon nitride photocatalysts by copolymerization with diaminomaleonitrile. Acta Phys. Chim. Sin. 28, 2336–2342 (2012)Google Scholar
  16. 16.
    D. Jeyanthi, M. Iniya, K. Krishnaveni, D. Chellappa, Novel indole based dual responsive “turn-on” chemosensor for fluoride ion detection. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 136, 1269–1274 (2015)Google Scholar
  17. 17.
    A.-Z.A. Al-Azmi, B.L. Elassar, Booth, The chemistry of diaminomaleonitrile and its utility in heterocyclic synthesis. Tetrahedron 59, 2749–2763 (2003)Google Scholar
  18. 18.
    K. Shirai, M. Matsuoka, K. Fukunishi, New syntheses and solid state fluorescence of azomethine dyes derived from diaminomaleonitrile and 2,5-diamino-3,6-dicyanopyrazine. Dyes Pigments 47, 107–115 (2000)Google Scholar
  19. 19.
    M.J. MacLachlan, M.K. Park, L.K. Thompson, Coordination compounds of Schiff-base ligands derived from diaminomaleonitrile (DMN): mononuclear, dinuclear, and macrocyclic derivatives. Inorg. Chem. 35, 5492–5499 (1996)Google Scholar
  20. 20.
    Z. Sheikhshoaie, Tohidiyan, Fast green method synthesis of copper(II) Schiff base complex in nano scale by sonochemical method. Can. J. Basic Appl. Sci. 3, 164–170 (2015)Google Scholar
  21. 21.
    S. Gholamrezaei, M. Salavati-Niasari, Sonochemical synthesis of SrMnO3 nanoparticles as an efficient and new catalyst for O2 evolution from water splitting reaction. Ultrason. Sonochem. 40, 651–663 (2018)Google Scholar
  22. 22.
    N. Zare, A. Zabardasti, A new nano-sized mononuclear Cu(II) complex with N,N-donor Schiff base ligands: sonochemical synthesis, characterization, molecular modeling and biological activity. Appl. Organomet. Chem. 33, 4687–4696 (2018).  https://doi.org/10.1002/aoc.4687 Google Scholar
  23. 23.
    F. Davar, M. Salavati-Niasari, N. Mir, K. Saberyan, M. Monemzadeh, E. Ahmadi, Thermal decomposition route for synthesis of Mn3O4 nanoparticles in presence of a novel precursor. Polyhedron 29, 1747–1753 (2010)Google Scholar
  24. 24.
    M. Salavati-Niasari, F. Davar, M. Mazaheri, Synthesis of Mn3O4 nanoparticles by thermal decomposition of a [bis(salicylidiminato) manganese(II)] complex. Polyhedron 27, 3467–3471 (2008)Google Scholar
  25. 25.
    M. Yoshimura, W.L. Suchanek, K. Byrappa, Soft solution processing: a strategy for one-step processing of advanced inorganic materials. MRS Bull. 25, 17–25 (2000)Google Scholar
  26. 26.
    M. Esmaeili-Zare, M. Salavati-Niasari, A. Sobhani, Simple sonochemical synthesis and characterization of HgSe nanoparticles. Ultrason. Sonochem. 19, (2012) 1079–1086Google Scholar
  27. 27.
    G. Kianpour, M. Salavati-Niasari, H. Emadi, Sonochemical synthesis and characterization of NiMoO4 nanorods. Ultrason. Sonochem. 20, 418–424 (2013)Google Scholar
  28. 28.
    F. Mohandes, M. Salavati-Niasari, Sonochemical synthesis of silver vanadium oxide micro/nanorods: solvent and surfactant effects. Ultrason. Sonochem. 20, 354–365 (2013)Google Scholar
  29. 29.
    B. Bouzerafa, A. Ourari, D. Aggoun, R. Ruiz-Rosas, Y. Ouennoughi, E. Morallon, Novel nickel(II) and manganese(III) complexes with bidentate Schiff-base ligand: synthesis, spectral, thermogravimetry, electrochemical and electrocatalytical properties. Res. Chem. Intermed. 42, 4839–4858 (2016)Google Scholar
  30. 30.
    A.D. Becke, Becke’s three parameter hybrid method using the LYP correlation functional. J. Chem. Phys. 98, 5648–5652 (1993)Google Scholar
  31. 31.
    C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785 (1988)Google Scholar
  32. 32.
    T. Han, Y. Hong, N. Xie, S. Chen, N. Zhao, E. Zhao, J.W. Lam, H.H. Sung, Y. Dong, B. Tong, Defect-sensitive crystals based on diaminomaleonitrile-functionalized Schiff base with aggregation-enhanced emission. J. Mater. Chem. C 1, 7314–7320 (2013)Google Scholar
  33. 33.
    C.M. Kane, O. Ugono, L.J. Barbour, K.T. Holman, Many simple molecular cavitands are intrinsically porous (zero-dimensional pore) materials. Chem. Mater. 27, 7337–7354 (2015)Google Scholar
  34. 34.
    Q. Wang, Y. Liu, W. Gao, Z. Xu, Y. Li, W. Li, M. Pilkington, Transformation of a ditopic Schiff base nickel(II) nitrate complex into an unsymmetrical Schiff base complex by partial hydrolytic degradation: structural and density functional theory studies. Transit. Metal Chem. 39, 613–621 (2014)Google Scholar
  35. 35.
    I. Sheikhshoaie, S.Y. Ebrahimipour, A. Crochet, K.M. Fromm, Synthesis, X-ray structure and DFT calculation of oxido-vanadium(V) complex with a tridentate Schiff base ligand. Res. Chem. Intermed. 41, 1881–1891 (2015)Google Scholar
  36. 36.
    Y. Harinath, D.H.K. Reddy, B.N. Kumar, K. Lakshmi, K. Seshaiah, Copper(II), nickel(II) complexes of n-heteroaromatic hydrazone: synthesis, characterization and in vitro antimicrobial evaluation. J. Chem. Pharm. Res. 3, 698 (2011)Google Scholar
  37. 37.
    N. Zare, A. Zabardasti, M. Dusek, V. Eigner, New asymmetric and symmetric 2-((pyridin-4-yl) methylenamino)-3 aminomaleo nitrile and 2,3-bis((pyridin-4-yl) methylenamino) maleonitrile Schiff bases: synthesis, experimental characterization along with theoretical studies. J. Mol. Struct. 1163, 388–396 (2018)Google Scholar
  38. 38.
    N. Zare, A. Zabardasti, A. Mohammadi, F. Azarbani, Synthesis of spherical Fe3O4 nanoparticles from the thermal decomposition of iron(III) nano-structure complex: DFT studies and evaluation of the biological activity. Bioorg. Chem. 80, 334–346 (2018)Google Scholar
  39. 39.
    A.C. Ekennia, D.C. Onwudiwe, C. Ume, E.E. Ebenso, Mixed ligand complexes of N-methyl-N-phenyl dithiocarbamate: synthesis, characterisation, antifungal activity, and solvent extraction studies of the ligand. Bioinorg. Chem. Appl. 2015, 913424 (2015).  https://doi.org/10.1155/2015/913424 Google Scholar
  40. 40.
    M.A. Riswan Ahamed, R.S. Azarudeen, N.M. Kani, Antimicrobial applications of transition metal complexes of benzothiazole based terpolymer: synthesis, characterization, and effect on bacterial and fungal strains. Bioinorg. Chem. Appl. 2014, 764085 (2014)Google Scholar
  41. 41.
    W. Koch, M.C. Holthausen, A Chemist’s Guide to Density Functional Theory. (Wiley, New York, 2015)Google Scholar
  42. 42.
    J.P. Merrick, D. Moran, L. Radom, An evaluation of harmonic vibrational frequency scale factors. J. Phys. Chem. A 111, 11683–11700 (2007)Google Scholar
  43. 43.
    S. Sagdinc, Y. Kara, F. Kayadibi, Theoretical study of 11-thiocyanatoundecanoic acid phenylamide derivatives on corrosion inhibition efficiencies. Can. J. Chem. 92, 876–887 (2014)Google Scholar
  44. 44.
    M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, J. Montgomery Jr., T. Vreven, K. Kudin, J. Burant, Gaussian 03, Revision A, vol 1 (Gaussian Inc., Pittsburgh, 2003)Google Scholar
  45. 45.
    M. Naseh, T. Sedaghat, A. Tarassoli, E. Shakerzadeh, DFT studies of ONO Schiff bases, their anions and diorganotin (IV) complexes: tautomerism, NBO and AIM analysis. Comput. Theor. Chem. 1005, 53–57 (2013)Google Scholar
  46. 46.
    M. Habibi, S.A. Beyramabadi, S. Allameh, M. Khashi, A. Morsali, M. Pordel, M. Khorsandi-Chenarboo, Synthesis, experimental and theoretical characterizations of a new Schiff base derived from 2-pyridincarboxaldehyde and its Ni(II) complex. J. Mol. Struct. 1143, 424–430 (2017)Google Scholar
  47. 47.
    M. Anoop, P. Binil, S. Suma, M. Sudarsanakumar, H.T. Varghese, C.Y. Panicker, Vibrational spectroscopic studies and computational study of ethyl methyl ketone thiosemicarbazone. J. Mol. Struct. 969, 48–54 (2010)Google Scholar
  48. 48.
    H. Temel, S. Ilhan, Prepared and characterization of new macrocyclic Schiff bases and their binuclear copper complexes. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 69, 896–903 (2008)Google Scholar
  49. 49.
    H. Keypour, A.A. Dehghani-Firouzabadi, H.R. Khavasi, Synthesis and characterization of three heptaaza manganese(II) macrocyclic Schiff base complexes containing two 2-pyridylmethyl pendant arms. Transit. Metal Chem. 36, 307–311 (2011)Google Scholar
  50. 50.
    H. Dhaouadi, O. Ghodbane, F. Hosni, F. Touati, Mn3O4 nanoparticles: synthesis, characterization, and dielectric properties. ISRN Spectrosc. 2012, 706398 (2012).  https://doi.org/10.5402/2012/706398 Google Scholar
  51. 51.
    L. Gnanasekaran, R. Hemamalini, R. Saravanan, K. Ravichandran, F. Gracia, S. Agarwal, V.K. Gupta, Synthesis and characterization of metal oxides (CeO2, CuO, NiO, Mn3O4, SnO2 and ZnO) nanoparticles as photo catalysts for degradation of textile dyes, J. Photochem. Photobiol. B Biol. 173, 43–49 (2017)Google Scholar
  52. 52.
    S. Stankic, S. Suman, F. Haque, J. Vidic, Pure and multi metal oxide nanoparticles: synthesis, antibacterial and cytotoxic properties. J. Nanobiotechnol. 14, 73 (2016)Google Scholar
  53. 53.
    A.H. Kianfar, M. Ebrahimi, Synthesis, characterization and structural determination of some nickel(II) complexes containing imido Schiff bases and substituted phosphine ligands. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 115, 725–729 (2013)Google Scholar
  54. 54.
    Z. Beigi, A.H. Kianfar, G. Mohammadnezhad, H. Goerls, W. Plass, Palladium(II) complexes with diaminomaleonitrile-based Schiff-base ligands: synthesis, characterization and application as Suzuki–Miyaura coupling catalysts. Polyhedron 134, 65–72 (2017)Google Scholar
  55. 55.
    Z. Beigi, A.H. Kianfar, H. Farrokhpour, M. Roushani, M.H. Azarian, W.A.K. Mahmood, Synthesis, characterization and spectroscopic studies of nickel(II) complexes with some tridentate ONN donor Schiff bases and their electrocatalytic application for oxidation of methanol. J. Mol. Liq. 249, 117–125 (2018)Google Scholar
  56. 56.
    C. Fasina, Synthesis, electronic spectra and inhibitory study of some salicylaldehyde Schiff bases of 2-aminopyridine. Afr. J. Pure Appl. Chem. 5, 13–18 (2011)Google Scholar
  57. 57.
    Y.-G. Li, D.-H. Shi, H.-L. Zhu, H. Yan, S.W. Ng, Transition metal complexes (M = Cu, Ni and Mn) of Schiff-base ligands: syntheses, crystal structures, and inhibitory bioactivities against urease and xanthine oxidase. Inorg. Chim. Acta 360, 2881–2889 (2007)Google Scholar
  58. 58.
    S. Saha, G. Basak, B. Sinha, Physico-chemical characterization and biological studies of newly synthesized metal complexes of an ionic liquid-supported Schiff base:-{2-[(2-hydroxy-5-bromobenzylidene) amino] ethyl}-3-ethylimidazolium tetrafluoroborate. J. Chem. Sci. 130, 9 (2018)Google Scholar
  59. 59.
    E.M. Zayed, M.A. Zayed, A.M. Fahim, F.A. El-Samahy, Synthesis of novel macrocyclic Schiff’s-base and its complexes having N2O2 group of donor atoms. Characterization and anticancer screening are studied. Appl. Organomet. Chem. 31, 3694 (2017)Google Scholar
  60. 60.
    W.M. Hassan, E.M. Zayed, A.K. Elkholy, H. Moustafa, G.G. Mohamed, Spectroscopic and density functional theory investigation of novel Schiff base complexes. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 103, 378–387 (2013)Google Scholar
  61. 61.
    Y.-Y. Yu, H.-D. Xian, J.-F. Liu, G.-L. Zhao, Synthesis, characterization, crystal structure and antibacterial activities of transition metal(II) complexes of the Schiff base 2-[(4-methylphenylimino) methyl]-6-methoxyphenol. Molecules 14, 1747–1754 (2009)Google Scholar
  62. 62.
    A.D. Khalaji, M. Nikookar, D. Das, Co(III), Ni(II), and Cu(II) complexes of bidentate N, O-donor Schiff base ligand derived from 4-methoxy-2-nitroaniline and salicylaldehyde. J. Therm. Anal. Calorim. 115, 409–417 (2014)Google Scholar
  63. 63.
    M. Rashad, A. Hassan, A. Nassar, N. Ibrahim, A. Mourtada, A new nano-structured Ni(II) Schiff base complex: synthesis, characterization, optical band gaps, and biological activity. Appl. Phys. A 117, 877–890 (2014)Google Scholar
  64. 64.
    D. Bui, J. Hu, P. Stroeven, Particle size effect on the strength of rice husk ash blended gap-graded Portland cement concrete. Cem. Concr. Compos. 27, 357–366 (2005)Google Scholar
  65. 65.
    H.F.A. El-Halim, G.G. Mohamed, M.M. El-Dessouky, W.H. Mahmoud, Ligational behaviour of lomefloxacin drug towards Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Th(IV) and UO2(VI) ions: synthesis, structural characterization and biological activity studies. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 82, 8–19 (2011)Google Scholar
  66. 66.
    R.K. Shah, K.S. Abou-Melha, F.A. Saad, T. Yousef, G.A. Al-Hazmi, M.G. Elghalban, A.M. Khedr, N. El-Metwaly, Elaborated studies on nano-sized homo-binuclear Mn(II), Fe(III), Co(II), Ni(II), and Cu(II) complexes derived from N2O2 Schiff base, thermal, molecular modeling, drug-likeness, and spectral. J. Therm. Anal. Calorim. 123, 731–743 (2016)Google Scholar
  67. 67.
    S.M. Abdallah, G.G. Mohamed, M. Zayed, M.S.A. El-Ela, Spectroscopic study of molecular structures of novel Schiff base derived from o-phthalaldehyde and 2-aminophenol and its coordination compounds together with their biological activity. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 73, 833–840 (2009)Google Scholar
  68. 68.
    P. Politzer, J.S. Murray, The fundamental nature and role of the electrostatic potential in atoms and molecules. Theor. Chem. Acc. Theory Comput. Model. (Theoretica Chimica Acta) 108, 134–142 (2002)Google Scholar
  69. 69.
    F.J. Luque, J.M. López, M. Orozco, Perspective on “Electrostatic Interactions of a Solute with a Continuum. A Direct Utilization of ab Initio Molecular Potentials for the Prevision of Solvent Effects”. Theoretical Chemistry Accounts. (Springer, New York, 2000), pp. 343–345Google Scholar

Copyright information

© Iranian Chemical Society 2019

Authors and Affiliations

  1. 1.Department of ChemistryLorestan UniversityKhorramabadIran
  2. 2.Department of BiologyLorestan UniversityKhorramabadIran

Personalised recommendations