Advertisement

(4-Hydroxy-2-oxo-2H-chromen-3-yl)methyl pyrrolidine-1-carbodithioate as a novel, highly selective and sensitive ligand for determination of copper in water and food samples by dispersive liquid–liquid microextraction coupled with microvolume UV–Vis spectrophotometry

  • Mohammad FarajiEmail author
  • Mahsa Pourmohammad
  • Fezzeh Aryanasab
  • Meisam Shabanian
Original Paper
  • 1 Downloads

Abstract

In this research, a fast, simple, selective, and sensitive spectrophotometric method based on dispersive liquid–liquid microextraction (DLLME) was developed for the ultratrace determination of copper(II) using newly synthesized chromogenic reagent (4-hydroxy-2-oxo-2H-chromen-3-yl)methyl pyrrolidine-1-carbodithioate (HCDTC). The affecting factors in complexation and microextraction steps were investigated and optimized. HCDTC forms highly sensitive yellow-colored complex with copper(II) (1:4 [copper(II): ligand]) in the wide pH range which shows maximum absorbance at 445 nm. In direct determination, Beer’s law was obeyed in the concentration range from 0.1 to 5.0 mg L−1. Molar absorptivity and Sandell’s sensitivity values for Cu(II)–HCDTC complex were 1.3 × 104 and 0.0047 µg cm−2, respectively. However, by applying DLLME, a detection limit as low as 0.3 µg L−1 with preconcentration factor of 92 and relative standard deviation (n = 6) less than 3.5% were achieved. Moreover, calibration graph was linear in the range of 1.0–200 µg L−1. Finally, the proposed method was successfully applied for preconcentration and determination of the Cu(II) in some water and fruit juice samples, and satisfactory results were obtained. Accuracy and reliability of the method were also verified by GF-AAS.

Keywords

Copper Spectrophotometric determination Dispersive liquid–liquid microextraction Juice samples 

Notes

Compliance with ethical standards

Conflict of interest

There are no conflicts to declare.

References

  1. 1.
    M.B. Gholivand, A. Sohrabi, S. Abbasi, Electroanal. 19, 1609 (2007)CrossRefGoogle Scholar
  2. 2.
    C.C. Pfeiffer, J. Orthomol. Med. 2, 171 (1987)Google Scholar
  3. 3.
    G. Pethes, Element Analysis of Biological Materials (IAEA, Vienna, 1980), p. 3Google Scholar
  4. 4.
    Guidelines for drinking water quality, Incorporating the First and Second Addenda, vol. 1, 3rd edn. (World Health Organization, Geneva, 2008), pp. 335–336Google Scholar
  5. 5.
    F.L.F. Silva, W.O. Matos, G.S. Lopes, Anal. Methods 7, 9844 (2015)CrossRefGoogle Scholar
  6. 6.
    R.N.C.S. Carvalho, G.B. Brito, M.G.A. Korn, J.S.R. Teixeira, F.S. Dias, A.F. Dantas, L.S.G. Teixeira, Anal. Methods 7, 8714 (2015)CrossRefGoogle Scholar
  7. 7.
    M. Davudabadi Farahani, F. Shemirani, N. Fasih Ramandi, M. Gharehbaghi, Food Anal. Method. 8, 1979 (2015)CrossRefGoogle Scholar
  8. 8.
    M. Rajabi, S. Asemipour, B. Barfi, M.R. Jamali, M. Behzad, J. Mol. Liq. 194, 166 (2014)CrossRefGoogle Scholar
  9. 9.
    C. Karadas, Water Air Soil Pollut. 225, 2150 (2014)CrossRefGoogle Scholar
  10. 10.
    E. Yavuz, S. Tokalıoglu, H. Sahan, S. Patat, Food Chem. 194, 463 (2016)CrossRefGoogle Scholar
  11. 11.
    C. Karadas, D. Kara, Food Chem. 220, 242 (2017)CrossRefGoogle Scholar
  12. 12.
    K. Shrivas, N.K. Jaiswal, Food Chem. 141, 2263 (2013)CrossRefGoogle Scholar
  13. 13.
    M.A. Farajzadeh, M. Bahram, B.G. Mehr, J.A. Josson, Talanta. 75, 832 (2008)CrossRefGoogle Scholar
  14. 14.
    N. Jalbani, M. Soylak, Food Chem. 167, 433 (2015)CrossRefGoogle Scholar
  15. 15.
    E. Yilmaz, M. Soylak, Talanta. 126, 191 (2014)CrossRefGoogle Scholar
  16. 16.
    W.S. Zhong, T. Ren, L.J. Zhao, J. Food Drug Anal. 24, 46 (2016)CrossRefGoogle Scholar
  17. 17.
    R.A. Nalawade, A.M. Nalawade, G.S. Kamble, M.A. Anuse, Spectrochim. Acta A Mol. Biomol. Spectrosc. 146, 297 (2015)CrossRefGoogle Scholar
  18. 18.
    G.S. Kamble, S.S. Kolekar, M.A. Anuse, Spectrochim. Acta A Mol. Biomol. Spectrosc. 78, 1455 (2011)CrossRefGoogle Scholar
  19. 19.
    D. Fu, D. Yuan, Spectrochim. Acta A Mol. Biomol. Spectrosc. 66, 434 (2007)CrossRefGoogle Scholar
  20. 20.
    K.H. Reddy, N.B.L. Prasad, T.S. Reddy, Talanta. 59, 425 (2003)CrossRefGoogle Scholar
  21. 21.
    V. Kaur, A.K. Malik, N. Verma, Anal. Lett. 40, 2360 (2007)CrossRefGoogle Scholar
  22. 22.
    R.S. Lokhande, R.P. Sonawane, U. Chavan, Int. J. Chem. Sci. 9, 503 (2011)Google Scholar
  23. 23.
    A.R. Kocharekar, N.V. Thakkar, J. Sci. Ind. Res. 63, 283 (2004)Google Scholar
  24. 24.
    U.B. Barache, A.B. Shaikh, T.N. Lokhande, G.S. Kamble, M.A. Anuse, S.H. Gaikwad, Spectrochim. Acta A Mol. Biomol. Spectrosc. 189, 443 (2018)CrossRefGoogle Scholar
  25. 25.
    X. Wen, Q. Deng, J. Guo, Spectrochim. Acta A Mol. Biomol. Spectrosc. 79, 1941 (2011)CrossRefGoogle Scholar
  26. 26.
    S. Yang, X. Fang, L. Duan, S. Yang, Z. Lei, X. Wen, Spectrochim. Acta A Mol. Biomol. Spectrosc. 148, 72 (2015)CrossRefGoogle Scholar
  27. 27.
    X. Wen, Q. Yang, Z. Yan, Q. Deng, Microchem. J. 97, 249 (2011)CrossRefGoogle Scholar
  28. 28.
    S.M. Sorouraddin, M.A. Farajzadeh, M. Ghorbani, J. Iran. Chem. Soc. 15, 201 (2018)CrossRefGoogle Scholar
  29. 29.
    A. Shokrollahi, F. Ebrahimi, J. AOAC Int. 100, 1861 (2017)CrossRefGoogle Scholar
  30. 30.
    M. Soylak, E. Kiranartligiller, Arab. J. Sci. Eng. 42, 175 (2017)CrossRefGoogle Scholar
  31. 31.
    31G. Özzeybek, S. Erarpat, D.S. Chormey, M. Fírat, Ç Büyükpınar, F. Turak, S. Bakırdere, Microchem. J. 132, 406 (2017)CrossRefGoogle Scholar
  32. 32.
    N. Baghban, E. Yilmaz, M. Soylak, Microchim. Acta 184, 3969 (2017)CrossRefGoogle Scholar
  33. 33.
    M. Zeeb, M.R. Ganjali, P. Norouzi, M.R. Kalaee, Food Chem. Toxicol. 49, 1086 (2011)CrossRefGoogle Scholar
  34. 34.
    M. Rezaee, Y. Assadi, M.-R.M. Hosseini, E. Aghaee, F. Ahmadi, S. Berijani, J Chromatogr. A. 1116, 1 (2006)CrossRefGoogle Scholar
  35. 35.
    M. Rezaee, Y. Yamini, M. Faraji, J. Chromatogr. A. 1217, 2342 (2010)CrossRefGoogle Scholar
  36. 36.
    R.G. Pearson, J. Am. Chem. Soc. 85, 3533 (1963)CrossRefGoogle Scholar
  37. 37.
    G. Hogarth, Progress in Inorganic Chemistry, Chap. 2, Transition Metal Dithiocarbamates: 1978–2003 (Wiley-VCH, New York, 2005)Google Scholar
  38. 38.
    G. Hogarth, C.-R.C.R. Ebony-Jewel, I. Rainford-Brent, Richards, Inorganica Chim. Acta. 362, 1361 (2009)CrossRefGoogle Scholar
  39. 39.
    C.G.M. de Lima, D.C. Menezes, C.A. Cavalcanti, J.A.F. dos Santos, I.P. Ferreira, E.B. Paniago, J.L. Wardell, S.M.S.V. Wardell, K. Krambrock, I.C. Mendes, H. Beraldo, J. Mol. Struct. 988, 1 (2011)CrossRefGoogle Scholar
  40. 40.
    D.K. Oliver, A.J.P. White, G.E. Hogarth, J.D.E.T. Wilton Ely. Dalton Trans. 40, 5852 (2011)CrossRefGoogle Scholar
  41. 41.
    E.B. Valeur, Molecular Fluorescence: Principles and Applications (Wiley-VCH, New York, 2001)CrossRefGoogle Scholar
  42. 42.
    F.A. Gocmen, M. Bulut, C. Erk, Pure Appl. Chem. 65, 447 (1993)CrossRefGoogle Scholar
  43. 43.
    G.T.Z. Yu, Y.L. Zhao, D.W. Fan, J. Mol Struct. 791, 18 (2006)CrossRefGoogle Scholar
  44. 44.
    F. Aryanasab, M. Shabanian, J. Iran. Chem. Soc. (2019).  https://doi.org/10.1007/s13738-019-01644-z Google Scholar

Copyright information

© Iranian Chemical Society 2019

Authors and Affiliations

  1. 1.Department of Food science and Technology, Faculty of Food Industry and AgricultureStandard Research Institute (SRI)KarajIran
  2. 2.Chemical Engineering Division, College of EnvironmentUoEKarajIran
  3. 3.Faculty of Chemistry and Petrochemical EngineeringStandard Research Institute (SRI)KarajIran

Personalised recommendations