Advertisement

An efficient transformation of methyl ethers and nitriles to amides catalyzed by Iron(III) perchlorate hydrate

  • Guibo YinEmail author
  • Bin Yan
  • Junqing Chen
  • Min Ji
Original Paper
  • 5 Downloads

Abstract

An efficient and inexpensive synthesis of N-substituted amides from the reaction of nitriles with methyl ethers catalyzed by Fe(ClO4)3·H2O is described. Fe(ClO4)3·H2O is an economically efficient catalyst for the Ritter Reaction under solvent-free conditions. A range of methyl ethers (benzyl, sec-alkyl and tert-butyl ethers) were reacted with nitriles to provide the corresponding amides in high–excellent yields.

Keywords

Ritter reaction Methyl ethers Fe(ClO4)3·H2Amides 

Notes

Acknowledgements

We are grateful to Nantong City Science Foundation (No. 2015) and Science program of Jiangsu College of Engineering and Technology for financial support.

Supplementary material

13738_2019_1615_MOESM1_ESM.docx (2.1 mb)
Supplementary material 1 (DOCX 2126 KB)

References

  1. 1.
    V.R. Pattabiraman, J.W. Bode, Nature 480, 471 (2011)CrossRefGoogle Scholar
  2. 2.
    E. Valeur, M. Bradley, Chem. Soc. Rev. 38, 606 (2009)CrossRefGoogle Scholar
  3. 3.
    E. Saxo, C.Z. Bertozzi, Science 287, 2007 (2000)CrossRefGoogle Scholar
  4. 4.
    F. Damkaci, P.D. Shong, J. Am. Chem. Soc. 125, 4408 (2003)CrossRefGoogle Scholar
  5. 5.
    Y.G. Gololobov, L.F. Kasukhin, Tetrahedron. 48, 1353 (1992)CrossRefGoogle Scholar
  6. 6.
    T. Ribelin, C.E. Katz, D.G. English, S. Smith, A.K. Manukyan, V.W. Day, B. Neuenswander, J.L. Poutsma, J. Aube, Angew. Chem. Int. Ed. 47, 6233 (2008)CrossRefGoogle Scholar
  7. 7.
    S. Lang, J.A. Murphy, Chem. Soc. Rev. 35, 146 (2006)CrossRefGoogle Scholar
  8. 8.
    N.A. Owston, A.J. Parker, J.M. Williams, J. Org. Lett. 9, 3599 (2007)CrossRefGoogle Scholar
  9. 9.
    M. Hashimoto, Y. Obora, S. Sakaguchi, Y. Ishii, J. Org. Chem. 73, 2894 (2008)CrossRefGoogle Scholar
  10. 10.
    J.W.W. Chang, T.M.U. Ton, S. Tania, P.C. Taylor, P.W.H. Chan, Chem. Commun. 46, 922 (2010)CrossRefGoogle Scholar
  11. 11.
    S.W. Krabbe, V.S. Chan, T.S. Franczyk, S. Shekhar, J. Napolitano, C.A. Presto, J.A. Simanis, J. Org. Chem. 81, 10688 (2016)CrossRefGoogle Scholar
  12. 12.
    D.-H. Jiang, T. He, L. Ma, Z.-Y. Wang, RSC Adv. 4, 64936 (2014)CrossRefGoogle Scholar
  13. 13.
    B. Anxionnat, A. Guérinot, S. Reymond, J. Cossy, Tetrahedron Lett. 50, 3470 (2009)CrossRefGoogle Scholar
  14. 14.
    M. Mukhopadhyay, M.M. Reddy, G.C. Maikap, J. Iqbal, J. Org. Chem. 60, 2670 (1995)CrossRefGoogle Scholar
  15. 15.
    E. Karimian, B. Akhlaghinia, S.S.E. Ghodsinia, J. Chem. Sci. 128, 429 (2016)CrossRefGoogle Scholar
  16. 16.
    D. Posevins, K. Suta, M. Turks, Eur. J. Org. Chem. 2016, 1414 (2016)CrossRefGoogle Scholar
  17. 17.
    G.R. Qu, Y.W. Song, H.Y. Niu, H.M. Guo, S.F. John, RSC Adv. 2, 6161 (2012)CrossRefGoogle Scholar
  18. 18.
    F. Tamaddon, F. Tavakoli, J Mol Catal. A. Chem. 337, 52 (2011)CrossRefGoogle Scholar
  19. 19.
    E. Wenkert, E.L. Michelotti, C.S. Swindell, J. Am. Chem. Soc. 101, 2246 (1979)CrossRefGoogle Scholar
  20. 20.
    E. Wenkert, E.L. Michelotti, C.S. Swindell, M. Tingoli, J. Org. Chem. 49, 4894 (1984)CrossRefGoogle Scholar
  21. 21.
    J.W. Dankwardt, Angew. Chem. Int. Ed. 43, 2428 (2004)CrossRefGoogle Scholar
  22. 22.
    F. Kakiuchi, M. Usui, S. Ueno, N. Chatani, S. Murai, J. Am. Chem. Soc. 126, 2706 (2004)CrossRefGoogle Scholar
  23. 23.
    M.D. Santos, B. Crousse, D. Bonnet-Delpon, Tetrahedron Lett. 50, 857 (2009)CrossRefGoogle Scholar
  24. 24.
    V. Panduranga, V.V. Basavaprabhu, Sureshbabu, Tetrahedron Lett. 54, 975 (2013)CrossRefGoogle Scholar
  25. 25.
    F. Li, J. Ma, L. Lu, X.F. Bao, W.Y. Tang, Catal. Sci. Technol. 5, 1953 (2015)CrossRefGoogle Scholar
  26. 26.
    K.V. Katkar, P.S. Chaudhari, K.G. Akamanchi, Green Chem. 13, 835 (2011)CrossRefGoogle Scholar
  27. 27.
    H. Cheng, M.Q. Xiong, C.X. Cheng, H.J. Wang, Q. Lu, H.F. Liu, F.B. Yao, C. Chen, F. Verpoort, Asian. J. Org. Chem. 13, 440 (2018)Google Scholar
  28. 28.
    D.C. Braddock, P.D. Lickiss, B.C. Rowley, D. Pugh, T. Purnomo, G. Santhakumar, S.J. Fussell, Org. Lett. 20, 950 (2018)CrossRefGoogle Scholar
  29. 29.
    Y.L. Tu, L. Yuan, T. Wang, C.L. Wang, J.M. Ke, J.F. Zhao, J. Org. Chem. 82, 4970 (2017)CrossRefGoogle Scholar
  30. 30.
    A.R. Prosser, J.E. Banning, M. Rubina, M. Rubin, Org. Lett. 12, 3968 (2010)CrossRefGoogle Scholar
  31. 31.
    C.L. Feng, B. Yan, W.J. Yao, J.Q. Chen, M. Ji, Chemistryselect. 3, 8501 (2018)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2019

Authors and Affiliations

  1. 1.Institute of Pharmaceutical EngineeringJiangsu College of Engineering and TechnologyNantongPeople’s Republic of China
  2. 2.School of Biological Sciences and Medical EngineeringSoutheast UniversityNanjingPeople’s Republic of China

Personalised recommendations