Dispersive solid phase extraction of lead in water samples using embedded 1,5-diphenylcarbazone grafted graphene oxide in microporous magnetic chitosan coupled with flame atomic absorption spectrometry

  • Negar Ghorbanian
  • Shahram SeidiEmail author
  • Jahan B. Ghasemi
  • Seyed Jamal Sadeghi
Original Paper


In the current study, an embedded 1,5-diphenylcarbazone (DPC) grafted graphene oxide (GO) in porous magnetic chitosan (MC) nanocomposite was synthesized and used for preconcentration of trace amount of Pb(II). For this purpose, a magnetic dispersive solid phase extraction (MDSPE) was utilized prior to determination by flame atomic absorption spectrometry (FAAS). The adsorbent was characterized using Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). The parameters influencing the extraction efficiency such as pH, extraction and desorption time, adsorbent amount and type, concentration and volume of eluent were optimized by design of experiment. Under the optimum conditions, calibration curve was linear within the range of 3.0–300 ng mL−1 with regression coefficient of 0.9957. The enhancement factor was obtained as 13.5 corresponding to the absolute recovery of 81%. The limits of detection (LOD, 3Sb/m) and quantification (LOQ) were found to be 0.13 ng mL−1 and 0.43 ng mL−1, respectively. Intra- and inter-day precisions (n = 5) were estimated using the relative standard deviation (RSD%) at three concentrations of 25, 100 and 250 ng mL−1 and were less than 3.2% and 5.6%, respectively. The maximum adsorption capacity (qm), calculated by the Langmuir equation, was found to be 57.47 mg g−1. The method was validated by analysis of an SRM-1643f standard reference material for trace elements in water. Finally, the method was successfully applied for the determination of trace amount of Pb(II) in various water samples with good relative recoveries ranged from 92.3 to 105%.


Microporous chitosan Magnetic dispersive solid phase extraction Lead Graphene oxide 1,5-Diphenylcarbazone Water sample 



The authors gratefully acknowledge the financial support provided by K.N. Toosi University of Technology (Tehran, Iran).

Supplementary material

13738_2019_1613_MOESM1_ESM.docx (371 kb)
Supplementary material 1 (DOCX 371 KB)


  1. 1.
    I. Hagarová, M. Bujdoš, P. Matúš, J. Kubová, Spectrochim. Acta B 88, 75 (2013)CrossRefGoogle Scholar
  2. 2.
    M. Taghizadeh, A.A. Asgharinezhad, N. Samkhaniany, A. Tadjarodi, A. Abbaszadeh, M. Pooladi, Microchim. Acta 181, 597 (2014)CrossRefGoogle Scholar
  3. 3.
    M. Taghizadeh, A.A. Asgharinezhad, M. Pooladi, M. Barzin, A. Abbaszadeh, A. Tadjarodi, Microchim. Acta 180, 1073 (2013) M,CrossRefGoogle Scholar
  4. 4.
    E. Fabbri. C. Soffritti. M. Merlin. C. Vaccaro, G.L. Garagnani, Spectrochim. Acta B 131, 18 (2017)CrossRefGoogle Scholar
  5. 5.
    P.N. Nomngongo, J.C. Ngila, Spectrochim. Acta B 98, 54 (2014)CrossRefGoogle Scholar
  6. 6.
    N. Vasimalai, S.A. John, Spectrochim. Acta A 82, 153 (2011)CrossRefGoogle Scholar
  7. 7.
    C.C. Leite, A. de Jesus, L. Kolling, M.F. Ferrão, D. Samios, M.M. Silva, Spectrochim. Acta B 142, 62 (2018)CrossRefGoogle Scholar
  8. 8.
    M. Rahimi-Nasrabadi, M.M. Zahedi, S.M. Pourmortazavi, Z. Nazari, A. Banan, A. Asghari, Microchim. Acta 180, 973 (2013)CrossRefGoogle Scholar
  9. 9.
    X. Wen. Q. Deng. J. Guo, S. Yang, Spectrochim. Acta A 79, 508 (2011)CrossRefGoogle Scholar
  10. 10.
    K. Prasad. P. Gopikrishna., R. Kala., T.P. Rao, G. Naidu, Talanta 69, 938 (2006)CrossRefGoogle Scholar
  11. 11.
    H. Shirkhanloo. M. Ghazaghi, H.Z. Mousavi, J. Mol. Liq. 218, 478 (2016)CrossRefGoogle Scholar
  12. 12.
    M.A. Abdel-Fadeel. H.M. Al-Saidi. A.A. El-Bindary. A.Z. El-Sonbati, S.S. Alharthi, J. Mol. Liq. 249, 963 (2018)CrossRefGoogle Scholar
  13. 13.
    H.A. Shaheen, H.M. Marwani, E.M. Soliman, J. Mol. Liq. 232, 139 (2017)CrossRefGoogle Scholar
  14. 14.
    N. Baghban. E. Yilmaz, M. Soylak, J. Mol. Liq. 234, 260 (2017)CrossRefGoogle Scholar
  15. 15.
    X. Ding. Y. Wang., Y. Wang., Q. Pan., J. Chen. Y. Huang, K. Xu, Anal. Chim. Acta 861, 36 (2015)CrossRefGoogle Scholar
  16. 16.
    Y. Zheng. F. Chu. B. Zhang., J. Yan, Y. Chen, Micropor. Mesopor. Mater. 263, 71 (2018)CrossRefGoogle Scholar
  17. 17.
    R. Castaldo. G.C. Lama. P. Aprea., G. Gentile. M. Lavorgna. V. Ambrogi, P. Cerruti, Micropor. Mesopor. Mater. 260, 102 (2018)CrossRefGoogle Scholar
  18. 18.
    K. Zhang. H. Li., X. Xu, H. Yu, Micropor. Mesopor. Mater. 255, 7 (2018)CrossRefGoogle Scholar
  19. 19.
    Y. Zhou. L. Zhou. X. Zhang, Y. Chen, Micropor. Mesopor. Mater. 225, 488 (2016)CrossRefGoogle Scholar
  20. 20.
    X. Zhang. H. Niu., Y. Pan. Y. Shi, Y. Cai, Anal. Chem. 82, 2363 (2010)CrossRefGoogle Scholar
  21. 21.
    M. Monier. D.M. Ayad., Y. Wei, A.A. Sarhan, J. Hazard. Mater. 177, 962 (2010)CrossRefGoogle Scholar
  22. 22.
    P. Zhang. X. Fang. G. Yan. M. Gao, X. Zhang, Talanta 174, 845 (2017)CrossRefGoogle Scholar
  23. 23.
    X. Liu. Q. Hu. Z. Fang. X. Zhang, B. Zhang, Langmuir 25 (2008) 3Google Scholar
  24. 24.
    L. Fan. C. Luo., X. Li., F. Lu. H. Qiu, M. Sun, J. Hazard. Mater. 215, 272 (2012)CrossRefGoogle Scholar
  25. 25.
    T. Tolessa. X.-X. Zhou. M. Amde, J.-F. Liu, Talanta 169, 91 (2017)CrossRefGoogle Scholar
  26. 26.
    Q. Gao. H. Zhu. W.-J. Luo. S. Wang, C.-G. Zhou, Micropor. Mesopor. Mater. 193, 15 (2014)CrossRefGoogle Scholar
  27. 27.
    S.J. Sadeghi. S. Seidi, J.B. Ghasemi, Anal. Methods 9, 222 (2017)CrossRefGoogle Scholar
  28. 28.
    M.B.M. Krishna, N. Venkatramaiah, R. Venkatesan, D.N. Rao, J. Mater. Chem. 22, 3059 (2012)CrossRefGoogle Scholar
  29. 29.
    E. Yavuz. Ş Tokalıoğlu., H. Şahan, Ş Patat, Talanta 115, 724 (2013)CrossRefGoogle Scholar
  30. 30.
    R. Sitko, B. Zawisza, E. Talik, P. Janik, G. Osoba, B. Feist, E. Malicka, Anal. Chim. Acta 834, 22 (2014)CrossRefGoogle Scholar
  31. 31.
    M. Khan. E. Yilmaz, M. Soylak, J. Mol. Liq. 224, 639 (2016)CrossRefGoogle Scholar
  32. 32.
    Z. Dahaghin. H.Z. Mousavi, M. Sajjadi, Food Chem. 237, 275 (2017)CrossRefGoogle Scholar
  33. 33.
    A.A. Gouda, S.M. Al Ghannam, Food Chem. 202, 409 (2016)CrossRefGoogle Scholar
  34. 34.
    M. Tuzen. S. Sahiner, B. Hazer, Food Chem. 210, 115 (2016)CrossRefGoogle Scholar
  35. 35.
    Ş. Tokalıoğlu, E. Yavuz, S. Demir, Ş Patat, Food Chem. 237 (2017) 707CrossRefGoogle Scholar
  36. 36.
    M. Ezoddin. B. Majidi. K. Abdi, N. Lamei, Bull. Environ. Contam. Toxicol. 95, 830 (2015)CrossRefGoogle Scholar
  37. 37.
    M. Karimi., A.M.H. Shabani, S. Dadfarnia, Microchim. Acta 183, 563 (2016)CrossRefGoogle Scholar
  38. 38.
    M.A. Karimi. A. Hatefi-Mehrjardi. S.Z. Mohammadi., A. Mohadesi. M. Mazloum-Ardakani. M.R.H. Nezhad, A.A. Kabir, J. Iran. Chem. Soc. 9, 171 (2012)CrossRefGoogle Scholar
  39. 39.
    H. Yuan. X. Wei. Z. Zeng. D. Yang, S. Chen, Anal. Methods 6, 9800 (2014)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2019

Authors and Affiliations

  • Negar Ghorbanian
    • 1
  • Shahram Seidi
    • 1
    Email author
  • Jahan B. Ghasemi
    • 2
  • Seyed Jamal Sadeghi
    • 1
  1. 1.Department of Analytical Chemistry, Faculty of ChemistryK.N. Toosi University of TechnologyTehranIran
  2. 2.Faculty of ChemistryUniversity of TehranTehranIran

Personalised recommendations