Spectroscopic, thermodynamic and molecular docking studies on the interaction of two water-soluble asymmetric cationic porphyrins with calf thymus DNA
- 8 Downloads
Abstract
The water-soluble cationic porphyrin, 5-(1-dodecyl pyridinium-4-yl)-10,15,20-tris(1-methylpyridinium-4-yl)-21H,23H-porphyrin tetrachloride (MDTMPyP), and its Cu(II) complex (CuMDTMPyP) have been prepared and characterized by 1H NMR, UV–visible spectroscopy and elemental analyses. The binding properties of the porphyrins with calf thymus DNA (CT-DNA) have been investigated by electrochemical, spectroscopic and molecular docking methods. These observations were further confirmed by monitoring DNA viscosity and also circular dichroism studies in the Soret region. The absorption spectrum changes of both porphyrins in Soret band region showed that they could intercalate in DNA structure. The obtained results showed that MDTMPyP has a higher affinity to CT-DNA than CuMDTMPyP. The porphyrin solutions were titrated with DNA and the UV–visible titration spectra were analyzed with multivariate curve resolution-alternating least squares (MCR-ALS) technique to obtain spectrum of porphyrin–DNA complex, and concentration profiles of free and DNA-bonded porphyrin. Then the binding constant was calculated by the combination of MCR-ALS and McGhee–von Hippel equation. Also, the thermodynamic parameters of the DNA binding process were acquired from the van’t Hoff equation at various temperatures. The positive and large values of the entropy, and enthalpy revealed that the interaction is endothermic, and the entropically driven process.
Graphical abstract
Keywords
Asymmetric cationic porphyrin Intercalation binding Calf thymus DNA Molecular docking Thermodynamic parameters MCR-ALSNotes
Acknowledgements
Financial support from the research council of the University of Mazandaran is gratefully acknowledged. This research did not receive any specific Grant from funding agencies in the public, commercial, or not-for-profit sectors.
Supplementary material
References
- 1.F. Bryden, R.W. Boyle, Adv. Organomet. Chem. 68, 141 (2016)Google Scholar
- 2.T. Jahanbin, H. Sauriat-Dorizon, P. Spearman, S. Benderbous, H. Korri-Youssoufi, Mater. Sci. Eng., C 52, 325 (2015)CrossRefGoogle Scholar
- 3.I. Baldea, R.-M. Ion, D.E. Olteanu, I. Nenu, D. Tudor, A.G. Filip, Clujul Med. 88, 175 (2015)CrossRefGoogle Scholar
- 4.Y. Chen, D. Zhao, Y. Liu, Chem. Commun. 51, 12266 (2015)CrossRefGoogle Scholar
- 5.S. Jin, P. Zhao, L.-C. Xu, M. Zheng, J.-Z. Lu, P.-L. Zhao, Q.-L. Su, H.-X. Chen, D.-T. Tang, J. Chen, Bioorg. Chem. 60, 110 (2015)CrossRefGoogle Scholar
- 6.C.R. Dass, J. Pharm. Pharmacol. 54, 3 (2002)CrossRefGoogle Scholar
- 7.B. Ruttkay-Nedecky, J. Kudr, L. Nejdl, D. Maskova, R. Kizek, V. Adam, Molecules 18, 14760 (2013)CrossRefGoogle Scholar
- 8.R.F. Pasternack, P. Garrity, B. Ehrlich, C.B. Davis, E.J. Gibbs, G. Orloff, A. Giartosio, C. Turano, Nucleic Acids Res. 14, 5919 (1986)CrossRefGoogle Scholar
- 9.D.L. Banville, L.G. Marzilli, W.D. Wilson, Biochem. Biophys. Res. Commun. 113, 148 (1983)CrossRefGoogle Scholar
- 10.T. Biver. F. Secco, M. Venturini, Coord. Chem. Rev. 252, 1163 (2008)CrossRefGoogle Scholar
- 11.P. Zhao, L.-C. Xu, J.-W. Huang, K.-C. Zheng, J. Liu, H.-C. Yu, L.-N. Ji Biophys. Chem. 134, 72 (2008)CrossRefGoogle Scholar
- 12.M.J. Carvlin, R.J. Fiel, Nucleic Acids Res. 11, 6121 (1983)CrossRefGoogle Scholar
- 13.S. Bhattacharya, G. Mandal, T. Ganguly, J. Photochem. Photobiol. B 101, 89 (2010)CrossRefGoogle Scholar
- 14.J.M. Nicoludis, S.P. Barrett, J.-L. Mergny, L.A. Yatsuny, Nucleic Acids Res. 40, 5432 (2012)CrossRefGoogle Scholar
- 15.D.H. Tjahjono, T. Akutsu, N. Yoshioka, H. Inoue, Biochim. Biophys. Acta 1472, 333 (1999)CrossRefGoogle Scholar
- 16.T. Yamamoto, D.H. Tjahjono, N. Yoshioka, H. Inoue, Bull. Chem. Soc. Jpn 76, 1947 (2003)CrossRefGoogle Scholar
- 17.D.H. Tjahjono, S. Mima, T. Akutsu, N. Yoshioka, H. Inoue, J. Inorg. Biochem. 85, 219 (2001)CrossRefGoogle Scholar
- 18.P. Kubát, K. Lang, P. Anzenbacher Jr, K. Jursíková, V. Král, B. Ehrenberg, J. Chem. Soc. Perkin Trans. 1, 933 (2000)CrossRefGoogle Scholar
- 19.J.M. Kelly, M.J. Murphy, D.J. McConnell, C. OhUigin, Nucleic Acids Res. 13, 167 (1985)CrossRefGoogle Scholar
- 20.P. Wang, L. Ren, H. He, F. Liang, X. Zhou, Z. Tan, ChemBioChem 7, 1155 (2006)CrossRefGoogle Scholar
- 21.M. Sari, J. Battioni, D. Mansuy, J. Le Pecq, Biochem. Biophys. Res. Commun. 141, 643 (1986)CrossRefGoogle Scholar
- 22.E. Reddi, M. Ceccon, G. Valduga, G. Jori, J.C. Bommer, F. Elisei, L. Latterini, U. Mazzucato, Photochem. Photobiol. 75, 462 (2002)CrossRefGoogle Scholar
- 23.G.I. Cárdenas-Jirón, L. Cortez, J. Mol. Model. 19, 2913 (2013)CrossRefGoogle Scholar
- 24.D.A. Caminos, E.N. Durantini, J. Porphyr. Phthalocyanines 9, 334 (2005)CrossRefGoogle Scholar
- 25.H. Li, O.S. Fedorova, A.N. Grachev, W.R. Trumble, G.A. Bohach, L. Czuchajowski, Biochim. Biophys. Acta 1354, 252 (1997)CrossRefGoogle Scholar
- 26.K. Hirakawa, M. Harada, S. Okazaki, Y. Nosaka, Chem. Commun. 48, 4770 (2012)CrossRefGoogle Scholar
- 27.H. Dezhampanah, A.-K. Bordbar, S. Tangestaninejad, J. Porphyr. Phthalocyanines 13, 964 (2009)CrossRefGoogle Scholar
- 28.F.C. Skrobot, I.L. Rosa, A.P.A. Marques, P.R. Martins, J. Rocha, A.A. Valente, Y. Iamamoto, J. Mol. Catal. A Chem. 237, 86 (2005)CrossRefGoogle Scholar
- 29.S. Lee, S.H. Jeon, B.-J. Kim, S.W. Han, H.G. Jang, S.K. Kim, Biophys. Chem. 92, 35 (2001)CrossRefGoogle Scholar
- 30.R.F. Pasternack, E.J. Gibbs, J.J. Villafranca, Biochemistry 22, 5409 (1983)CrossRefGoogle Scholar
- 31.M. Balaz, K. Bitsch-Jensen, A. Mammana, G.A. Ellestad, K. Nakanishi, N. Berova, Pure Appl. Chem. 79, 801 (2007)CrossRefGoogle Scholar
- 32.E. Vaishnavi, R. Renganathan, Analyst 139, 225 (2014)CrossRefGoogle Scholar
- 33.Z.-Q. Xu, B. Zhou, F.-L. Jiang, J. Dai, Y. Liu, Colloids Surf. B 110, 321 (2013)CrossRefGoogle Scholar
- 34.W. Lu, B.S.F. Band, Y. Yu, Q.G. Li, J.C. Shang, C. Wang, Y. Fang, R. Tian, L.P. Zhou, L.L. Sun, Microchim. Acta 158, 29 (2007)CrossRefGoogle Scholar
- 35.K. Yue, M. Lin, T.A. Gray, L.G. Marzilli, Inorg. Chem. 30, 3214 (1991)CrossRefGoogle Scholar
- 36.J.A. Strickland, L.G. Marzilli, W.D. Wilson, G. Zon, Inorg. Chem. 28, 4191 (1989)CrossRefGoogle Scholar
- 37.G. Dougherty, R.F. Pasternack, Biophys. Chem. 44, 11 (1992)CrossRefGoogle Scholar
- 38.F. Cui, Q. Liu, H. Luo, G. Zhang, J. Fluoresc. 24, 189 (2014)CrossRefGoogle Scholar
- 39.Y. Li, Y. Jiang, X.-P. Yan, Anal. Chem. 78, 6115 (2006)CrossRefGoogle Scholar
- 40.L.A. Lipscomb, F.X. Zhou, S.R. Presnell, R.J. Woo, M.E. Peek, R.R. Plaskon, L.D. Williams, Biochemistry 35, 2818 (1996)CrossRefGoogle Scholar
- 41.N. Shahabadi, S. Kashanian, Z. Ahmadipour, DNA Cell Biol. 30, 187 (2011)CrossRefGoogle Scholar
- 42.Y. Ni, M. Wei, S. Kokot, Int. J. Biol. Macromol. 49, 622 (2011)CrossRefGoogle Scholar
- 43.W.H. Lawton, E.A. Sylvestre, Technometrics 13, 617 (1971)CrossRefGoogle Scholar
- 44.M. Reichmann, S. Rice, C. Thomas, P. Doty, J. Am. Chem. Soc. 76, 3047 (1954)CrossRefGoogle Scholar
- 45.J. Marmur, J. Mol. Biol. 3, 208IN1 (1961)Google Scholar
- 46.R. Tauler, Chemom. Intell. Lab. Syst. 30, 133 (1995)CrossRefGoogle Scholar
- 47.G.H. Golub, C.F. Van Loan, Matrix Computations (JHU Press, Baltimore, 2012)Google Scholar
- 48.M. Maeder, Anal. Chem. 59, 527 (1987)CrossRefGoogle Scholar
- 49.J. Jaumot, R. Gargallo, A. de Juan, R. Tauler, Chemom. Intell. Lab. Syst. 76, 101 (2005)CrossRefGoogle Scholar
- 50.R. Tauler, A. Smilde, B. Kowalski, J. Chemom. 9, 31 (1995)CrossRefGoogle Scholar
- 51.R. Tauler, B. Kowalski, S. Fleming, Anal. Chem. 65, 2040 (1993)CrossRefGoogle Scholar
- 52.A. de Juan, R. Tauler, Anal. Chim. Acta 500, 195 (2003)CrossRefGoogle Scholar
- 53.A. de Juan, R. Tauler, Crit. Rev. Anal. Chem. 36, 163 (2006)CrossRefGoogle Scholar
- 54.K.B. Wiberg, J. Comput. Chem. 7, 379 (1986)CrossRefGoogle Scholar
- 55.C.G. Ricci, P.A. Netz, J. Chem. Inf. Model. 49, 1925 (2009)CrossRefGoogle Scholar
- 56.G.M. Morris, D.S. Goodsell, R.S. Halliday, R. Huey, W.E. Hart, R.K. Belew, A.J. Olson, J. Comput. Chem. 19, 1639 (1998)CrossRefGoogle Scholar
- 57.A. Stallivieri, F. Le Guern, R. Vanderesse, E. Meledje, G. Jori, C. Frochot, S. Acherar, Photochem. Photobiol. Sci. 14, 1290 (2015)CrossRefGoogle Scholar
- 58.E.D. Becker, R.B. Bradley, C. Watson, J. Am. Chem. Soc. 83, 3743 (1961)CrossRefGoogle Scholar
- 59.M. Gouterman, J. Mol. Spectrosc. 6, 138 (1961)CrossRefGoogle Scholar
- 60.M. Sirajuddin, S. Ali, A. Badshah, J. Photochem. Photobiol, B 124, 1 (2013)CrossRefGoogle Scholar
- 61.G. Pratviel, Coord. Chem. Rev. 308, 460 (2016)CrossRefGoogle Scholar
- 62.E.C. Long, J.K. Barton, Acc. Chem. Res. 23, 271 (1990)CrossRefGoogle Scholar
- 63.J.D. McGhee, P.H. von Hippel, J. Mol. Biol. 86, 469 (1974)CrossRefGoogle Scholar
- 64.R. Fiel, B. Munson, Nucleic Acids Res. 8, 2835 (1980)CrossRefGoogle Scholar
- 65.P. Lugo-Ponce, D.R. McMillin, Coord. Chem. Rev. 208, 169 (2000)CrossRefGoogle Scholar
- 66.R. Fiel, J. Howard, E. Mark, N.D. Gupta, Nucleic Acids Res. 6, 3093 (1979)CrossRefGoogle Scholar
- 67.J. Li, Y. Wei, L. Guo, C. Zhang, Y. Jiao, S. Shuang, C. Dong, Talanta 76, 34 (2008)CrossRefGoogle Scholar
- 68.J. Kang, H. Wu, X. Lu, Y. Wang, L. Zhou, Spectrochim. Acta Part A 61, 2041 (2005)CrossRefGoogle Scholar
- 69.T. Jia, Z.-X. Jiang, K. Wang, Z.-Y. Li, Biophys. Chem. 119, 295 (2006)CrossRefGoogle Scholar
- 70.J.B. Chaires, Biopolymers 44, 201 (1997)CrossRefGoogle Scholar
- 71.D.C. Harris, M.D. Bertolucci, Symmetry and Spectroscopy: An Introduction to Vibrational and Electronic Spectroscopy (Oxford University Press, New York, 1978)Google Scholar
- 72.A.P. Demchenko, Advanced Fluorescence Reporters in Chemistry and Biology I: Fundamentals and Molecular Design (Springer Science & Business Media, New York, 2010)Google Scholar
- 73.J.R. Lakowicz, G. Weber, Biochemistry 12, 4161 (1973)CrossRefGoogle Scholar
- 74.R.F. Pasternack, P.J. Collings, Science 269, 935 (1995)CrossRefGoogle Scholar
- 75.R.F. Pasternack, S. Gurrieri, R. Lauceri, R. Purrello, Inorg. Chim. Acta 246, 7 (1996)CrossRefGoogle Scholar
- 76.Z. Chen, Z. Wang, J. Chen, X. Chen, J. Wu, Y. Wu, J. Liang, Eur. J. Med. Chem. 66, 380 (2013)CrossRefGoogle Scholar
- 77.A. Laesecke, J.L. Burger, Biorheology 51, 15 (2014)Google Scholar
- 78.V.G. Barkhudaryan, G.V. Ananyan, Y.B. Dalyan, S.G. Haroutiunian, J. Porphyr. Phthalocyanines 18, 594 (2014)CrossRefGoogle Scholar
- 79.M.J. Carvlin, N. Datta-Gupta, R.J. Fiel, Biochem. Biophys. Res. Commun. 108, 66 (1982)CrossRefGoogle Scholar
- 80.R.F. Pasternack, Chirality 15, 329 (2003)CrossRefGoogle Scholar
- 81.G. Pescitelli, L. Di Bari, N. Berova, Chem. Soc. Rev. 43, 5211 (2014)CrossRefGoogle Scholar
- 82.J. Maruyama, C. Baier, H. Wolfschmidt, P. Bele, U. Stimming, Electrochim. Acta 63, 16 (2012)CrossRefGoogle Scholar
- 83.P. Ling, J. Lei, L. Zhang, H. Ju, Anal. Chem. 87, 3957 (2015)CrossRefGoogle Scholar
- 84.M.H. Fatemi, A. Heidari, S. Gharaghani, J. Theor. Biol. 369, 13 (2015)CrossRefGoogle Scholar
- 85.N. Shahabadi, S. Bagheri, Spectrochim. Acta Part A 136, 1454 (2015)CrossRefGoogle Scholar
- 86.S. Gharaghani, T. Khayamian, F. Keshavarz, Struct. Chem. 23, 341 (2012)CrossRefGoogle Scholar
- 87.C.A. Hunter, J. Singh, J.M. Thornton, J. Mol. Biol. 218, 837 (1991)CrossRefGoogle Scholar
- 88.S. Lee, Y.-A. Lee, H.M. Lee, J.Y. Lee, D.H. Kim, S.K. Kim, Biophys. J. 83, 371 (2002)CrossRefGoogle Scholar
- 89.T. Ohyama, H. Mita, Y. Yamamoto, Biophys. Chem. 113, 53 (2005)CrossRefGoogle Scholar
- 90.R.F. Pasternack, S. Ewen, A. Rao, A.S. Meyer, M.A. Freedman, P.J. Collings, S.L. Frey, M.C. Ranen, J.C. de Paula, Inorg. Chim. Acta 317, 59 (2001)CrossRefGoogle Scholar
- 91.S. Wu, Z. Li, L. Ren, B. Chen, F. Liang, X. Zhou, T. Jia, X. Cao, Bioorg. Med. Chem. 14, 2956 (2006)CrossRefGoogle Scholar