Advertisement

Ultrasensitive quantification of paraquat using a newly developed sensor based on silver nanoparticle-decorated carbon nanotubes

  • Masoumeh GhalkhaniEmail author
  • Sahar Maghsoudi
  • Reza Saeedi
  • Shokooh Sadat KhalooEmail author
Original Paper
  • 6 Downloads

Abstract

Present work introduces a novel electrochemical sensor that developed based on glassy carbon electrode modified by Nafion coating on the multiwall carbon nanotubes decorated with the electrochemically deposited silver nanoparticles, N/AgNP/MWCNT/GCE. Application of the metal nanoparticles and Nafion in the modification of the MWCNTs casted on the GCE surface significantly enhanced the sensitivity and stability of the GCE response toward paraquat (PQ) and omitted or reduced the potential effects of the interferences on the PQ quantification. The proposed procedure showed a wide linear quantification range of 0.1–10 µM with a high sensitivity of 5.47 µA/µM and a very low detection limit of 68 nM. This sensor was employed for PQ determination in real samples with good recovery outcomes. N/AgNP/MWCNT/GCE showed good anti-interfering effect toward the component of the orange juice revealing its applicability for real sample analysis.

Keywords

Paraquat Carbon nanotubes Glassy carbon electrode Composite Determination Silver 

Notes

Acknowledgements

The authors wish to express their gratitude to the Shahid Beheshti University of Medical Sciences Research Council and Shahid Rajaee Teacher Training University for the financial support of this work.

Supplementary material

13738_2019_1605_MOESM1_ESM.doc (586 kb)
Supplementary material 1 (DOC 586 KB)

References

  1. 1.
    Centers for disease control and prevention, Facts About Paraquat. (National Institute for Occupational Safety and Health, 2013), https://emergency.cdc.gov/agent/paraquat/basics/facts.asp. Accessed 1 Nov 2018
  2. 2.
    USEPA, 2018 Edition of the Drinking Water Standards and Health Advisories Tables, 2018), https://www.epa.gov/sites/production/files/2018-03/documents/dwtable2018.pdf. Accessed 1 Nov 2018
  3. 3.
    P. Chuntib, J. Jakmunee, Talanta 144, 432–438 (2015)CrossRefGoogle Scholar
  4. 4.
    W. Siangproh, T. Somboonsuk, O. Chailapakul, K. Songsrirote, Talanta 174, 448–453 (2017)CrossRefGoogle Scholar
  5. 5.
    P. Chuntib, S. Themsirimongkon, S. Saipanya, J. Jakmunee, Talanta 170, 1–8 (2017)CrossRefGoogle Scholar
  6. 6.
    L.C.S. De Figueiredo-Filho, M. Baccarin, B.C. Janegitz, O. Fatibello-Filho, Sensor. Actuator. B 240, 749–756 (2017)CrossRefGoogle Scholar
  7. 7.
    A. Farahi, M. Achak, L. El Gaini, M.A. El Mhammedi, M. Bakasse, J. Assoc. Arab Univer. Basic Appl. Sci. 19, 37–43 (2016)Google Scholar
  8. 8.
    J. Li, W. Lei, Y. Xu, Y. Zhang, M. Xia, F. Wang, Electrochim. Acta 174, 464–471 (2015)CrossRefGoogle Scholar
  9. 9.
    L.M. Niu, F. Liu, W. Wang, K.Q. Lian, L. Ma, H.M. Shi, W.J. Kang, Electrochim. Acta 153, 190–199 (2015)CrossRefGoogle Scholar
  10. 10.
    J.A. Ribeiro, C.A. Carreira, H.J. Lee, F. Silva, A. Martins, C.M. Pereira, Electrochim. Acta 55, 7892–7896 (2010)CrossRefGoogle Scholar
  11. 11.
    R. Garcia-Febrero, J.P. Salvador, F. Sanchez-Baeza, M.P. Marco, Food Control 41, 193–201 (2014)CrossRefGoogle Scholar
  12. 12.
    R. Gao, N. Choi, S.-I. Chang, S.H. Kang, J.M. Song, S.I. Cho, D.W. Lim, J. Choo, Anal. Chim. Acta 681, 87–91 (2010)CrossRefGoogle Scholar
  13. 13.
    S. Shahrokhian, L. Naderi, M. Ghalkhani, Electroanalysis 27, 2637–2644 (2015)CrossRefGoogle Scholar
  14. 14.
    E.H. Bindewald, A.F. Schibelbain, M.A.P. Papi, E.G.C. Neiva, A.J.G. Zarbin, M.F. Bergamini, L.H. Marcolino-Júnior, Mater. Sci. Engin. C 79, 262–269 (2017)CrossRefGoogle Scholar
  15. 15.
    H. Fayazfar, A. Afshar, A. Dolati, M. Ghalkhani, J. Appl. Electrochem. 44, 263–277 (2014)CrossRefGoogle Scholar
  16. 16.
    S.S. Khaloo, S. Mozaffari, P. Alimohammadi, H. Kargar, J. Ordookhanian, Inter. J. Food Propert 19, 2272–2283 (2016)CrossRefGoogle Scholar
  17. 17.
    A. Economou, Sensors 18, 1032 (2018)CrossRefGoogle Scholar
  18. 18.
    Y.B. Mollamahale, M. Ghorbani, A. Dolati, M. Ghalkhani, Surf. aInterf. 10, 27–31 (2018)Google Scholar
  19. 19.
    M. Ghalkhani, M. Salehi, Journal of Materials Science 52, 12390–12400 (2017)CrossRefGoogle Scholar
  20. 20.
    S. Cheraghi, M.A. Taher, H. Karimi-Maleh, J. Food Composit. Anal. 62, 254–259 (2017)CrossRefGoogle Scholar
  21. 21.
    M. Ghalkhani, M. Salehi, S.S. Khaloo, J. Electron. Mater. 47, 6251–6259 (2018)CrossRefGoogle Scholar
  22. 22.
    M.M. Hussain, M.M. Rahman, A.M. Asiri, J. Environ. Sci. 53, 27–38 (2017)CrossRefGoogle Scholar
  23. 23.
    S.S. Khaloo, S. Mozaffari, A. Barekat, F. Karimi, Micro & Nano Letter 10, 561–566 (2015)CrossRefGoogle Scholar
  24. 24.
    W. Chen, W. Weng, X. Niu, X. Li, Y. Men, W. Sun, G. Li, L. Dong, J. Electroanal. Chem. 823, 137–145 (2018)CrossRefGoogle Scholar
  25. 25.
    N. Hui, J. Wang, A. Liang, M. Jiang, Electroanalysis 28, 2979–2984 (2016)CrossRefGoogle Scholar
  26. 26.
    N.S. Anuar, W.J. Basirun, M. Ladan, M. Shalauddin, M.S. Mehmood, Sensor. Actuator. B 266, 375–383 (2018)CrossRefGoogle Scholar
  27. 27.
    B. Liu, B. Xiao, L. Cui, J. Food Composit. Anal. 40, 14–18 (2015)CrossRefGoogle Scholar
  28. 28.
    S. Gupta, C.N. Murthy, C.R. Prabha, Inter. J. Biolog. Macromol. 108, 687–703 (2018)CrossRefGoogle Scholar
  29. 29.
    G. Maduraiveeran, M. Sasidharan, V. Ganesan, Biosens. Bioelectron. 103, 113–129 (2018)CrossRefGoogle Scholar
  30. 30.
    W. Qi, X. Zhang, H. Wang, Current Opinion Colloid Interf. Sci. 35, 36–41 (2018)CrossRefGoogle Scholar
  31. 31.
    S. Shrivastava, N. Jadon, R. Jain, TrAC Trend Anal. Chem. 82, 55–67 (2016)CrossRefGoogle Scholar
  32. 32.
    A. Farahi, L. El Gaini, M. Achak, S.El Yamani, M.A. El Mhammedi, M. Bakasse, Food Control 47, 679–685 (2015)CrossRefGoogle Scholar
  33. 33.
    B.R. Kozub, N.V. Rees, R.G. Compton, Sensor. Actuator. B 143, 539–546 (2010)CrossRefGoogle Scholar
  34. 34.
    E.E.L. Tanner, R.G. Compton, Electroanalysis 30, 1336–1341 (2018)CrossRefGoogle Scholar
  35. 35.
    S. El Kasmi, S. Lahrich, A. Farahi, M. Zriouil, M. Ahmamou, M. Bakasse, M.A. El Mhammedi, J. Taiwan Inst. Chem. Engin. 58, 165–172 (2016)CrossRefGoogle Scholar
  36. 36.
    L.L.C. Garcia, L.C.S. Figueiredo-Filho, G.G. Oliveira, O. Fatibello-Filho, C.E. Banks, Sensor. Actuator B 181, 306–311 (2013)CrossRefGoogle Scholar
  37. 37.
    A. Farahi, S. Lahrich, M. Achak, L. El Gaini, M. Bakasse, M.A. El Mhammedi, Anal. Chem. Res. 1, 16–21 (2014)CrossRefGoogle Scholar
  38. 38.
    D.D. Souza, S.A.S. Machado, R.C. Pires, Talanta 69, 1200–1207 (2006)CrossRefGoogle Scholar
  39. 39.
    G. Kenne Dedzo, C. Péguy, E. Nanseu-Njiki, Ngameni, Talanta 99, 478–486 (2012)Google Scholar

Copyright information

© Iranian Chemical Society 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceShahid Rajaee Teacher Training UniversityTehranIran
  2. 2.Department of Health, Safety and Environment, School of Public Health and SafetyShahid Beheshti University of Medical SciencesTehranIran

Personalised recommendations