Advertisement

Carbothermic synthesis of boron carbide with low free carbon using catalytic amount of magnesium chloride

  • Masoud BakhshiEmail author
  • Ali Souri
  • Mohammad K. AminiEmail author
Original Paper
  • 9 Downloads

Abstract

Microcrystalline boron carbide was synthesized from boric acid and carbon black in the presence of a small amount of magnesium chloride by carbothermal reduction method at 1600 °C. The presence of magnesium chloride in the mixture has a determining effect in increasing the yield of the reaction and lowering the residual free-carbon content of the resulting boron carbide. We have also shown that, compared to several reported carbothermal reduction methods, the present catalyst also considerably lowers the excess amount of boron compound precursor required to afford boron carbide with negligible free carbon. X-ray powder diffraction (XRD) pattern indicated that the product was rhombohedral B4C. No peak, corresponding to free carbon, was observed in the XRD diffraction pattern of the B4C product formed from H3BO3:C:MgCl2 in the molar ratio of 1.0:1.45:0.01. Scanning electron microscopy image also showed that the product is fully crystalline and consisted of uniformly sized particles.

Keywords

Boron carbide Boric acid Carbon black Carbothermal reduction Magnesium chloride 

Notes

Acknowledgements

The authors gratefully acknowledge full support of this work by the Sooreh Company, Isfahan, Islamic Republic of Iran.

References

  1. 1.
    F. Thévenot, Boron carbide—a comprehensive review. J. Eur. Ceram. Soc. 6, 205–225 (1990).  https://doi.org/10.1016/0955-2219(90)90048-K CrossRefGoogle Scholar
  2. 2.
    V. Domnich, S. Reynaud, R.A. Haber, M. Chhowalla, Boron carbide: structure, properties, and stability under stress. J. Am. Ceram. Soc. 94, 3605–3628 (2011).  https://doi.org/10.1111/j.1551-2916.2011.04865.x CrossRefGoogle Scholar
  3. 3.
    S. Ebrahimi, M.S. Heydari, H.R. Baharvandi, N. Ehsani, Effect of iron on the wetting, sintering ability, and the physical and mechanical properties of boron carbide composites: a review. Int. J. Refract. Metals Hard Mater. 57, 78–92 (2016).  https://doi.org/10.1016/j.ijrmhm.2016.02.007 CrossRefGoogle Scholar
  4. 4.
    M. Mashhadi, E. Taheri-Nassaj, V.M. Sglavo, H. Sarpoolaky, N. Ehsani, Effect of Al addition on pressureless sintering of B4C. Ceram. Int. 35, 831–837 (2009).  https://doi.org/10.1016/j.ceramint.2008.03.003 CrossRefGoogle Scholar
  5. 5.
    S. Sharma, J. Bijwe, S. Panier, Assessment of potential of nano and micro-sized boron carbide particles to enhance the abrasive wear resistance of UHMWPE. Compos. B Eng. 99, 312–320 (2016).  https://doi.org/10.1016/j.compositesb.2016.06.003 CrossRefGoogle Scholar
  6. 6.
    K. Jagannadham, T. Watkins, M. Lance, L. Riester, R. Lemaster, Laser physical vapor deposition of boron carbide films to enhance cutting tool performance. Surf. Coat. Technol. 203, 3151–3156 (2009).  https://doi.org/10.1016/j.surfcoat.2009.03.049 CrossRefGoogle Scholar
  7. 7.
    A. Suri, C. Subramanian, J. Sonber, T.C. Murthy, Synthesis and consolidation of boron carbide: a review. Int. Mater. Rev. 55, 4–40 (2010).  https://doi.org/10.1179/095066009X12506721665211 CrossRefGoogle Scholar
  8. 8.
    M. Shokrieh, G. Javadpour, Penetration analysis of a projectile in ceramic composite armor. Compos. Struct. 82, 269–276 (2008).  https://doi.org/10.1016/j.compstruct.2007.01.023 CrossRefGoogle Scholar
  9. 9.
    S. Junlong, L. Changxia, T. Jin, F. Baofu, Erosion behavior of B4C based ceramic nozzles by abrasive air-jet. Ceram. Int. 38, 6599–6605 (2012).  https://doi.org/10.1016/j.ceramint.2012.05.045 CrossRefGoogle Scholar
  10. 10.
    D. Jianxin, Erosion wear of boron carbide ceramic nozzles by abrasive air-jets. Mater. Sci. Eng. A 408, 227–233 (2005).  https://doi.org/10.1016/j.msea.2005.07.029 CrossRefGoogle Scholar
  11. 11.
    A. Hushur, M.H. Manghnani, H. Werheit, P. Dera, Q. Williams, High-pressure phase transition makes B4. 3C boron carbide a wide-gap semiconductor. J. Phys. Condens. Matter 28(12), 045403 (2016).  https://doi.org/10.1088/0953-8984/28/4/045403 pp)CrossRefGoogle Scholar
  12. 12.
    A. Devaraju, K. Pazhanivel, Evaluation of microstructure, mechanical and wear properties of aluminium reinforced with boron carbide nano composite. Indian J. Sci. Technol. 9, 1–6 (2016).  https://doi.org/10.17485/ijst/2016/v9i20/84294 CrossRefGoogle Scholar
  13. 13.
    M.L. Natta, J.I. Brand, Efficiency in photovoltaic heteroisomeric boron carbide diodes. ECS Trans. 2, 135–139 (2007).  https://doi.org/10.1149/1.2409037 CrossRefGoogle Scholar
  14. 14.
    J. Liu, S. Wen, Y. Hou, F. Zuo, G.J. Beran, P. Feng, Boron carbides as efficient, metal-free, visible-light-responsive photocatalysts. Angew. Chem. 125, 3323–3327 (2013).  https://doi.org/10.1002/anie.201209363 CrossRefGoogle Scholar
  15. 15.
    E. Antolini, E. Gonzalez, Ceramic materials as supports for low-temperature fuel cell catalysts. Solid State Ion. 180, 746–763 (2009).  https://doi.org/10.1016/j.ssi.2009.03.007 CrossRefGoogle Scholar
  16. 16.
    X. Wu, Y. Gao, X.C. Zeng, Hydrogen storage in pillared Li-dispersed boron carbide nanotubes. J. Phys. Chem. C 112, 8458–8463 (2008).  https://doi.org/10.1021/jp710022y CrossRefGoogle Scholar
  17. 17.
    L. Begrambekov, O. Buzhinskij, Features and advantages of boron carbide as a protective coating of the tokamak first wall. Plasma Dev. Oper. 15, 193–199 (2007).  https://doi.org/10.1080/10519990701450657 CrossRefGoogle Scholar
  18. 18.
    P.S. Reddy, R. Kesavan, B.V. Ramnath, Investigation of mechanical properties of aluminium 6061-silicon carbide. Boron Carbide Metal Matrix Compos. Silicon 10, 495–502 (2018).  https://doi.org/10.1007/s12633-016-9479-8 Google Scholar
  19. 19.
    C.-H. Jung, M.-J. Lee, C.-J. Kim, Preparation of carbon-free B4C powder from B2O3 oxide by carbothermal reduction process. Mater. Lett. 58, 609–614 (2004).  https://doi.org/10.1016/S0167-577X(03)00579-2 CrossRefGoogle Scholar
  20. 20.
    A. Bute, R. Kar, S. Chopade, S. Desai, M. Deo, P. Rao et al., Effect of self-bias on the elemental composition and neutron absorption of boron carbide films deposited by RF plasma enhanced CVD. Mater. Chem. Phys. 182, 62–71 (2016).  https://doi.org/10.1016/j.matchemphys.2016.07.005 CrossRefGoogle Scholar
  21. 21.
    Z. Soltani, A. Beigzadeh, F. Ziaie, E. Asadi, Effect of particle size and percentages of boron carbide on the thermal neutron radiation shielding properties of HDPE/B4C composite: experimental and simulation studies. Radiat. Phys. Chem. 127, 182–187 (2016).  https://doi.org/10.1016/j.radphyschem.2016.06.027 CrossRefGoogle Scholar
  22. 22.
    A. Erol, I. Pocan, E. Yanbay, O.A. Ersoz, F.Y. Lambrecht, Radiation shielding of polymer composite materials with wolfram carbide and boron carbide. Radiat. Protect. Environ. 39, 3–6 (2016).  https://doi.org/10.4103/0972-0464.185147 CrossRefGoogle Scholar
  23. 23.
    A. Sinha, T. Mahata, B.P. Sharma, Carbothermal route for preparation of boron carbide powder from boric acid–citric acid gel precursor. J. Nucl. Mater. 301, 165–169 (2002).  https://doi.org/10.1016/S0022-3115(02)00704-3 CrossRefGoogle Scholar
  24. 24.
    J.-Y. Min, B.-N. Lee, J.-S. Lee, J.-H. Lee, Neutron shielding performance of mortar containing synthetic high polymers and boron carbide. J. Korea Concr. Inst. 28, 197–204 (2016).  https://doi.org/10.4334/JKCI.2016.28.2.197 CrossRefGoogle Scholar
  25. 25.
    R. Jimbou, M. Saidoh, K. Nakamura, M. Akiba, S. Suzuki, Y. Gotoh et al., New composite composed of boron carbide and carbon fiber with high thermal conductivity for first wall. J. Nucl. Mater. 233, 781–786 (1996).  https://doi.org/10.1016/S0022-3115(96)00306-6 CrossRefGoogle Scholar
  26. 26.
    M.W. Mortensen, P.G. Sorensen, O. Bjorkdahl, M.R. Jensen, H.J. Gundersen, T. Bjornholm, Preparation and characterization of boron carbide nanoparticles for use as a novel agent in T cell-guided boron neutron capture therapy. Appl. Radiat. Isot. 64, 315–324 (2006).  https://doi.org/10.1016/j.apradiso.2005.08.003 CrossRefGoogle Scholar
  27. 27.
    A.M. Hadian, J.A. Bigdeloo, The effect of time, temperature and composition on boron carbide synthesis by sol-gel method. J. Mater. Eng. Perform. 17, 44–49 (2008).  https://doi.org/10.1007/s11665-007-9125-0 CrossRefGoogle Scholar
  28. 28.
    A. Fathi, N. Ehsani, M. Rashidzadeh, H. Baharvandi, A. Rahimnejad, Synthesis of boron carbide nano particles using polyvinyl alcohol and boric acid. Ceramics Silikáty 56, 32–35 (2012)Google Scholar
  29. 29.
    N. Shawgi, S. Wang, Z. Wang, Y.N. Nie, Synthesis of nano particles and fiber-like shape boron carbide powder from poly(vinyl alcohol) and boric acid. J. Sol-Gel Sci. Technol. 82, 450–457 (2017).  https://doi.org/10.1007/s10971-017-4320-4 CrossRefGoogle Scholar
  30. 30.
    P. Amin, A.A. Nourbakhsh, P. Asgarian, R. Ebrahimi, Kahrizsangi, The effect of temperature and magnesium size on low temperature magnesiothermic synthesis of nano structures boron carbide by mesoporous carbon (CMK-1), Iran. J. Mater. Sci. Eng. 13, 12–18 (2016)Google Scholar
  31. 31.
    G. Rafi-ud-din, E. Zahid, M. Ahmad, T. Maqbool, W.A. Subhani, Syed et al., Effect of cellulose-derived structural homogeneity of precursor on the synthesis and morphology of boron carbide. J. Inorg. Organomet. Polym. 25, 995–999 (2015).  https://doi.org/10.1007/s10904-015-0181-x CrossRefGoogle Scholar
  32. 32.
    R. Mohanty, K. Balasubramanian, S. Seshadri, Multiphase formation of boron carbide in B2O3–Mg–C based micropyretic process. J. Alloys Compd. 441, 85–93 (2007).  https://doi.org/10.1016/j.jallcom.2006.09.069 CrossRefGoogle Scholar
  33. 33.
    B. Ozcelik, C. Ergun, Synthesis of boron carbide nanoparticles via spray pyrolysis. J. Mater. Res. 31, 2789–2803 (2016).  https://doi.org/10.1557/jmr.2016.264 CrossRefGoogle Scholar
  34. 34.
    J.A. Bigdeloo, A.M. Hadian, Synthesis of high purity micron size boron carbide powder from B2O3/C precursor. Int. J. Recent Trends Eng. 1(5), 176–180 (2009)Google Scholar
  35. 35.
    A. Alizadeh, E. Taheri-Nassaj, N. Ehsani, Synthesis of boron carbide powder by a carbothermic reduction method. J. Eur. Ceram. Soc. 24, 3227–3234 (2004).  https://doi.org/10.1016/j.jeurceramsoc.2003.11.012 CrossRefGoogle Scholar
  36. 36.
    T.R. Pilladi, K. Ananthansivan, S. Anthonysamy, Synthesis of boron carbide from boric oxide-sucrose gel precursor. Powder Technol. 246, 247–251 (2013).  https://doi.org/10.1016/j.powtec.2013.04.055 CrossRefGoogle Scholar
  37. 37.
    D.K. Bose, K.U. Nair, C.K. Gupta, Production of high purity boron carbide. High Temp. Mater. Process. 7, 133–140 (1986).  https://doi.org/10.1515/HTMP.1986.7.2-3.133 CrossRefGoogle Scholar
  38. 38.
    T.R. Pilladi, K. Ananthasivan, S. Anthonysamy, V. Ganesan, Synthesis of nanocrystalline boron carbide from boric acid–sucrose gel precursor. J. Mater. Sci. 47, 1710–1718 (2012).  https://doi.org/10.1007/s10853-011-5950-5 CrossRefGoogle Scholar
  39. 39.
    B.L. Grabchuk, P.S. Kislyi, Sintering of boron carbide containing small amounts of free carbon. Sov. Powder Metall. Metals Ceram. 14, 538–541 (1975).  https://doi.org/10.1007/bf00810986 CrossRefGoogle Scholar
  40. 40.
    H. Zeng, Y.-M. Kan, G.-J. Zhang, Synthesis of boron carbide powder from hexagonal boron nitride. Mater. Lett. 64, 2000–2002 (2010).  https://doi.org/10.1016/j.matlet.2010.06.018 CrossRefGoogle Scholar
  41. 41.
    T.N. Nazarchuk, L.N. Mekhanoshina, The oxidation of boron carbide. Sov. Powder Metall. Metals Ceram. 3, 123–126 (1964).  https://doi.org/10.1007/bf00774482 CrossRefGoogle Scholar
  42. 42.
    M. Bougoin, F. Thevenot, Pressureless sintering of boron carbide with an addition of polycarbosilane. J. Mater. Sci. 22, 109–114 (1987).  https://doi.org/10.1007/bf0116055 CrossRefGoogle Scholar
  43. 43.
    D. Annie, V. Chandramouli, S. Anthonysamy, Wet chemical method for determination of free carbon content in boron carbide. Int. J. Chem. Anal. Sci. 7, 1–4 (2016)Google Scholar
  44. 44.
    M. Alkan, M.S. Sonmez, B. Derin, O. Yucel, Purification attempts of B4C powders produced by metallothermic process, in Conference Paper, Proceedings of the 11th ECERS Conference, Krakow, 2009Google Scholar
  45. 45.
    G. Goller, C. Toy, A. Tekin, C. Gupta, The production of boron carbide by carbothermic reduction. High Temp. Mater. Process. 15, 117–122 (1996).  https://doi.org/10.1515/HTMP.1996.15.1-2.117 CrossRefGoogle Scholar
  46. 46.
    A. Alizadeh, E. Taheri-Nassaj, N. Ehsani, H. Baharvandi, Production of boron carbide powder by carbothermic reduction from boron oxide and petroleum coke or carbon active. Adv. Appl. Ceram. 105, 291–296 (2006).  https://doi.org/10.1179/174367606X146685 CrossRefGoogle Scholar
  47. 47.
    A. C791-12, Standard Test Methods for Chemical, Mass Spectrometric, and Spectrochemical Analysis of Nuclear-Grade Boron Carbide, Designation: C791-12, ASTM 2012, pp. 1–25Google Scholar
  48. 48.
    A. C751-16, Standard Specification for Nuclear-Grade Boron Carbide Pellets, C751-16, ASTM 2016, pp. 1–3Google Scholar
  49. 49.
    A. C750-09, Standard Specification for Nuclear-Grade Boron Carbide Powder, C750-09, ASTM 2009, pp. 1–3Google Scholar
  50. 50.
    M. Bakhshi, H. Arab, M.K. Amini, Comparison of sample preparation methods for determination of free carbon in boron carbide by X-ray powder diffraction. J. Iran. Chem. Soc. 13, 1673–1681 (2016).  https://doi.org/10.1007/s13738-016-0884-0 CrossRefGoogle Scholar
  51. 51.
    X. Chen, S. Dong, Y. Kan, H. Zhou, J. Hu, Y. Ding, Effect of glycerine addition on the synthesis of boron carbide from condensed boric acid–polyvinyl alcohol precursor. RSC Adv. 6, 9338–9343 (2016).  https://doi.org/10.1039/C5RA23303H CrossRefGoogle Scholar
  52. 52.
    S. Miller, F. Toksoy, W. Rafaniello, R. Haber, Submicron boron carbide synthesis through rapid carbothermal reduction, in: J.J. Swab ed. by Advances in Ceramic Armor VIII: Ceramic Engineering and Science Proceedings, 33, 195–207 (2013)  https://doi.org/10.1002/9781118217498.ch18
  53. 53.
    S. Herth, W.J. Joost, R.H. Doremus, R.W. Siegel, New approach to the synthesis of nanocrystalline boron carbide. J. Nanosci. Nanotechnol. 6, 954–959 (2006).  https://doi.org/10.1166/jnn.2006.186 CrossRefGoogle Scholar
  54. 54.
    Y. Gao, W. Rafaniello, M.F. Toksoy, T. Munhollon, R. Haber, Improvement of crystallization and particle size distribution of boric acid in the processing of a boron carbide precursor. RSC Adv. 5, 19067–19073 (2015).  https://doi.org/10.1039/C4RA16279J CrossRefGoogle Scholar
  55. 55.
    Y. Gao, A. Etzold, T. Munhollon, W. Rafaniello, R. Haber, Processing factors influencing the free carbon contents in boron carbide powder by rapid carbothermal reduction. Diamond Relat. Mater. 61, 14–20 (2016).  https://doi.org/10.1016/j.diamond.2015.11.005 CrossRefGoogle Scholar
  56. 56.
    B. Chang, B. Gersten, J.W. Adams, S. Szewczyk, Preparation of boron carbide nanoparticles by carbothermal reduction method. Mater. Res. Soc. Symp. Proc. Camb. Univ. Press, 848, 1–6 (2005)  https://doi.org/10.1557/PROC-848-FF9.28 Google Scholar
  57. 57.
    A.R.M. de Castro, J.O.A. Paschoal, Boron carbide synthesis by carbothermic reduction of boron oxide, in INIS-BR-1258, Sao Paulo, Brazil (1988)Google Scholar

Copyright information

© Iranian Chemical Society 2019

Authors and Affiliations

  1. 1.Sooreh CompanyIsfahanIslamic Republic of Iran
  2. 2.Department of ChemistryUniversity of IsfahanIsfahanIslamic Republic of Iran

Personalised recommendations