Advertisement

Inter-relation between size and arrangement of TiO2 nanoparticle layers on efficiency of dye-sensitized solar cells

  • Pooya Tahay
  • Meisam Babapour Gol Afshani
  • Nasser SafariEmail author
Original Paper
  • 5 Downloads

Abstract

The effects of TiO2 layer arrangement as photo-anode on the efficiency of dye-sensitized solar cells were investigated and presented. Four TiO2 nanoparticles being different from the TiO2 particle sizes and phases were prepared and characterized with TEM, AFM and XRD analyses. These TiO2 particles were used to prepare three-layered photo-anode with different layer arrangements. The J–V measurements and impedance spectroscopy of the assembled solar cells with these photo-anodes and N3 dye were investigated and interpreted. The photo-anode in which the particles were arranged from large to small (CBA) and the photo-anode in which the particle size is equal (BBB) presented the best efficiency. The BBB performance was related to the appropriate particle size in the B layer and was a driving force for electron transfer, which is inducted by the oxidized dyes. In the CBA sample, this driving force was enhanced by the different particle sizes in the layer interfaces.

Graphical abstract

Keywords

TiO2 Electron transfer Layer arrangement Photo-anode Particle-size distribution Dye-sensitized solar cells 

Notes

Acknowledgements

We thank S. Ali Alavi for AFM analysis. This work was supported by Shahid Beheshti University and Iran National Science Foundation (INSF).

Author contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Supplementary material

13738_2019_1596_MOESM1_ESM.docx (380 kb)
Supplementary material 1 (DOCX 379 KB)

References

  1. 1.
    B. Oregan, M. Gratzel, Nature 353, 737 (1991)CrossRefGoogle Scholar
  2. 2.
    L.M. Peter, J. Phys. Chem. Lett. 2 1861 (2011)CrossRefGoogle Scholar
  3. 3.
    M. Shojaeifar. E. Mohajerani, M. Fathollahi, J. Appl. Phys. 123, 13102 (2018)CrossRefGoogle Scholar
  4. 4.
    L. Vaillant, E. Vigil, F. Forcade, T. Thami, A. Ayral, P. Saint-Gregoire, H. Adnani, C. Yacou, Eur. Phys. J. Appl. Phys. 72, 20404 (2015)CrossRefGoogle Scholar
  5. 5.
    N. Kanetada. C. Matsumura. S. Yamazaki, K. Adachi, Acs Appl. Mater. Interfaces 5, 12991 (2013)CrossRefGoogle Scholar
  6. 6.
    G. Hagfeldt, L.C. Boschloo, L. Sun, H. Kloo, Pettersson, Chem. Rev. 110, 6595 (2010)CrossRefGoogle Scholar
  7. 7.
    M. Asemi, S. Maleki, M. Ghanaatshoar, J. Sol–Gel. Sci. Technol. 81, 645 (2017)CrossRefGoogle Scholar
  8. 8.
    M. Ameri. F. Samavat. E. Mohajerani, M. Fathollahi, J. Phys. D Appl. Phys. 49, 225601 (2016)CrossRefGoogle Scholar
  9. 9.
    M. Ameri, F. Samavat, E. Mohajerani, RSC Adv. 5, 92690 (2015)CrossRefGoogle Scholar
  10. 10.
    N.M. Green, E. Palomares, S.A. Haque, J.M. Kroon, J.R. Durrant, J. Phys. Chem. B 109, 12525 (2005)CrossRefGoogle Scholar
  11. 11.
    S. Avinash, V.S. Chaturmukha, H.S. Jayanna, C.S. Naveen, M.P. Rajeeva, B.M. Harish, S. Suresh, A.R. Lamani, AIP conference proceedings 1728 20426 (2016)Google Scholar
  12. 12.
    J. Lim, J.H. Um, K.J. Lee, S.H. Yu, Y.J. Kim, Y.E. Sung, J.K. Lee, Nanoscale 8, 5688 (2016)CrossRefGoogle Scholar
  13. 13.
    N. Satoh. T. Nakashima. K. Kamikura, K. Yamamoto, Nat Nano 3, 106 (2008)CrossRefGoogle Scholar
  14. 14.
    S. Ardo, G.J. Meyer, Chem. Soc. Rev. 38, 115 (2009)CrossRefGoogle Scholar
  15. 15.
    Y. Matsumoto. Y. Miura, S. Takata, J. Phys. Chem. C 120, 1472 (2016)CrossRefGoogle Scholar
  16. 16.
    P. Tahay, N. Safari, M.B.G. Afshani, A. Alavi, Z. Parsa. Phys. Chem. Chem. Phys. 19, 11187 (2017)CrossRefGoogle Scholar
  17. 17.
    J. Bisquert, V.S. Vikhrenko, J. Phys. Chem. B 108, 2313 (2004)CrossRefGoogle Scholar
  18. 18.
    L. Kavan, M. Grätzel, S.E. Gilbert, C. Klemenz, H.J. Scheel, J. Am. Chem. Soc. 118, 6716 (1996)CrossRefGoogle Scholar
  19. 19.
    R. Jitchati, Y. Thathong, K. Wongkhan, Int. J. Appl. Phys. Math. 2, 107 (2012)CrossRefGoogle Scholar
  20. 20.
    S. Ito, P. Chen, P. Pechy, M. Gratzel, P. Comte, M.K. Nazeeruddin, P. Liska. Prog. Photovolt. 15, 603 (2007)CrossRefGoogle Scholar
  21. 21.
    F. Fabregat-Santiago. G. Garcia-Belmonte. I. Mora-Sero, J. Bisquert, Phys. Chem. Chem. Phys. 13, 9083 (2011)CrossRefGoogle Scholar
  22. 22.
    K. Park, Q.F. Zhang, D. Myers, G.Z. Cao, Acs Appl Mater Interfaces 5, 1044 (2013)CrossRefGoogle Scholar
  23. 23.
    J. Bisquert, F. Fabregat-Santiago, I. Mora-Sero, G. Garcia-Belmonte, E.M. Barea, E. Palomares, Inorg. Chim. Acta 361, 684 (2008)CrossRefGoogle Scholar
  24. 24.
    B.C. O’Regan, J.R. Durrant, Acc. Chem. Res. 42, 1799 (2009)CrossRefGoogle Scholar
  25. 25.
    E. Ronca, M. Pastore, L. Belpassi. F. Tarantelli, F. De Angelis, Energy Environ. Sci. 6, 183 (2013)CrossRefGoogle Scholar
  26. 26.
    M. Pastore, T. Etienne, F. De Angelis, J. Mater. Chem. C 4, 4346 (2016)CrossRefGoogle Scholar
  27. 27.
    D.O. Scanlon, A.A. Sokol, C.W. Dunnill, J. Buckeridge, S.A. Shevlin, A.J. Logsdail, S.M. Woodley, C.R.A. Catlow, M.J. Powell, R.G. Palgrave, I.P. Parkin, G.W. Watson, T.W. Keal, P. Sherwood, A. Walsh. Nat. Mater. 12, 798 (2013)CrossRefGoogle Scholar
  28. 28.
    S.K. Dhungel, J.G. Park, Himal. Phys. 4, 4 (2013)Google Scholar
  29. 29.
    Usami, Chem. Phys. Lett. 277, 105 (1997)CrossRefGoogle Scholar
  30. 30.
    S. Hore, P. Nitz, C. Vetter, C. Prahl, M. Niggemann, R. Kern, Chemical communications 2011 (2005)Google Scholar
  31. 31.
    J.K. Lee, B.H. Jeong, S.I. Jang, Y.G. Kim, Y.W. Jang, S.B. Lee, M.R. Kim, J. Ind. Eng. Chem. 15, 724 (2009)CrossRefGoogle Scholar
  32. 32.
    W.Y. Rho, M. Vaseem, H.Y. Yang, T. Mahmoudi, S.K. Lee, Y.B. Hahn, Sci. Adv. Mater. 8, 236 (2016)CrossRefGoogle Scholar
  33. 33.
    N.G. Park, J. van de Lagemaat, A.J. Frank, J. Phys. Chem. B 104, 8989 (2000)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2019

Authors and Affiliations

  1. 1.Department of Chemistry and OilShahid Beheshti UniversityTehranIran

Personalised recommendations