Inter-relation between size and arrangement of TiO2 nanoparticle layers on efficiency of dye-sensitized solar cells
- 5 Downloads
Abstract
The effects of TiO2 layer arrangement as photo-anode on the efficiency of dye-sensitized solar cells were investigated and presented. Four TiO2 nanoparticles being different from the TiO2 particle sizes and phases were prepared and characterized with TEM, AFM and XRD analyses. These TiO2 particles were used to prepare three-layered photo-anode with different layer arrangements. The J–V measurements and impedance spectroscopy of the assembled solar cells with these photo-anodes and N3 dye were investigated and interpreted. The photo-anode in which the particles were arranged from large to small (CBA) and the photo-anode in which the particle size is equal (BBB) presented the best efficiency. The BBB performance was related to the appropriate particle size in the B layer and was a driving force for electron transfer, which is inducted by the oxidized dyes. In the CBA sample, this driving force was enhanced by the different particle sizes in the layer interfaces.
Graphical abstract
Keywords
TiO2 Electron transfer Layer arrangement Photo-anode Particle-size distribution Dye-sensitized solar cellsNotes
Acknowledgements
We thank S. Ali Alavi for AFM analysis. This work was supported by Shahid Beheshti University and Iran National Science Foundation (INSF).
Author contributions
The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.
Supplementary material
References
- 1.B. Oregan, M. Gratzel, Nature 353, 737 (1991)CrossRefGoogle Scholar
- 2.L.M. Peter, J. Phys. Chem. Lett. 2 1861 (2011)CrossRefGoogle Scholar
- 3.M. Shojaeifar. E. Mohajerani, M. Fathollahi, J. Appl. Phys. 123, 13102 (2018)CrossRefGoogle Scholar
- 4.L. Vaillant, E. Vigil, F. Forcade, T. Thami, A. Ayral, P. Saint-Gregoire, H. Adnani, C. Yacou, Eur. Phys. J. Appl. Phys. 72, 20404 (2015)CrossRefGoogle Scholar
- 5.N. Kanetada. C. Matsumura. S. Yamazaki, K. Adachi, Acs Appl. Mater. Interfaces 5, 12991 (2013)CrossRefGoogle Scholar
- 6.G. Hagfeldt, L.C. Boschloo, L. Sun, H. Kloo, Pettersson, Chem. Rev. 110, 6595 (2010)CrossRefGoogle Scholar
- 7.M. Asemi, S. Maleki, M. Ghanaatshoar, J. Sol–Gel. Sci. Technol. 81, 645 (2017)CrossRefGoogle Scholar
- 8.M. Ameri. F. Samavat. E. Mohajerani, M. Fathollahi, J. Phys. D Appl. Phys. 49, 225601 (2016)CrossRefGoogle Scholar
- 9.M. Ameri, F. Samavat, E. Mohajerani, RSC Adv. 5, 92690 (2015)CrossRefGoogle Scholar
- 10.N.M. Green, E. Palomares, S.A. Haque, J.M. Kroon, J.R. Durrant, J. Phys. Chem. B 109, 12525 (2005)CrossRefGoogle Scholar
- 11.S. Avinash, V.S. Chaturmukha, H.S. Jayanna, C.S. Naveen, M.P. Rajeeva, B.M. Harish, S. Suresh, A.R. Lamani, AIP conference proceedings 1728 20426 (2016)Google Scholar
- 12.J. Lim, J.H. Um, K.J. Lee, S.H. Yu, Y.J. Kim, Y.E. Sung, J.K. Lee, Nanoscale 8, 5688 (2016)CrossRefGoogle Scholar
- 13.N. Satoh. T. Nakashima. K. Kamikura, K. Yamamoto, Nat Nano 3, 106 (2008)CrossRefGoogle Scholar
- 14.S. Ardo, G.J. Meyer, Chem. Soc. Rev. 38, 115 (2009)CrossRefGoogle Scholar
- 15.Y. Matsumoto. Y. Miura, S. Takata, J. Phys. Chem. C 120, 1472 (2016)CrossRefGoogle Scholar
- 16.P. Tahay, N. Safari, M.B.G. Afshani, A. Alavi, Z. Parsa. Phys. Chem. Chem. Phys. 19, 11187 (2017)CrossRefGoogle Scholar
- 17.J. Bisquert, V.S. Vikhrenko, J. Phys. Chem. B 108, 2313 (2004)CrossRefGoogle Scholar
- 18.L. Kavan, M. Grätzel, S.E. Gilbert, C. Klemenz, H.J. Scheel, J. Am. Chem. Soc. 118, 6716 (1996)CrossRefGoogle Scholar
- 19.R. Jitchati, Y. Thathong, K. Wongkhan, Int. J. Appl. Phys. Math. 2, 107 (2012)CrossRefGoogle Scholar
- 20.S. Ito, P. Chen, P. Pechy, M. Gratzel, P. Comte, M.K. Nazeeruddin, P. Liska. Prog. Photovolt. 15, 603 (2007)CrossRefGoogle Scholar
- 21.F. Fabregat-Santiago. G. Garcia-Belmonte. I. Mora-Sero, J. Bisquert, Phys. Chem. Chem. Phys. 13, 9083 (2011)CrossRefGoogle Scholar
- 22.K. Park, Q.F. Zhang, D. Myers, G.Z. Cao, Acs Appl Mater Interfaces 5, 1044 (2013)CrossRefGoogle Scholar
- 23.J. Bisquert, F. Fabregat-Santiago, I. Mora-Sero, G. Garcia-Belmonte, E.M. Barea, E. Palomares, Inorg. Chim. Acta 361, 684 (2008)CrossRefGoogle Scholar
- 24.B.C. O’Regan, J.R. Durrant, Acc. Chem. Res. 42, 1799 (2009)CrossRefGoogle Scholar
- 25.E. Ronca, M. Pastore, L. Belpassi. F. Tarantelli, F. De Angelis, Energy Environ. Sci. 6, 183 (2013)CrossRefGoogle Scholar
- 26.M. Pastore, T. Etienne, F. De Angelis, J. Mater. Chem. C 4, 4346 (2016)CrossRefGoogle Scholar
- 27.D.O. Scanlon, A.A. Sokol, C.W. Dunnill, J. Buckeridge, S.A. Shevlin, A.J. Logsdail, S.M. Woodley, C.R.A. Catlow, M.J. Powell, R.G. Palgrave, I.P. Parkin, G.W. Watson, T.W. Keal, P. Sherwood, A. Walsh. Nat. Mater. 12, 798 (2013)CrossRefGoogle Scholar
- 28.S.K. Dhungel, J.G. Park, Himal. Phys. 4, 4 (2013)Google Scholar
- 29.Usami, Chem. Phys. Lett. 277, 105 (1997)CrossRefGoogle Scholar
- 30.S. Hore, P. Nitz, C. Vetter, C. Prahl, M. Niggemann, R. Kern, Chemical communications 2011 (2005)Google Scholar
- 31.J.K. Lee, B.H. Jeong, S.I. Jang, Y.G. Kim, Y.W. Jang, S.B. Lee, M.R. Kim, J. Ind. Eng. Chem. 15, 724 (2009)CrossRefGoogle Scholar
- 32.W.Y. Rho, M. Vaseem, H.Y. Yang, T. Mahmoudi, S.K. Lee, Y.B. Hahn, Sci. Adv. Mater. 8, 236 (2016)CrossRefGoogle Scholar
- 33.N.G. Park, J. van de Lagemaat, A.J. Frank, J. Phys. Chem. B 104, 8989 (2000)CrossRefGoogle Scholar