Advertisement

Electric field effects on the growth of flame-synthesized nanosilica: a two-stage modeling

  • Hassan SabzyanEmail author
  • Farhad Ghalami
Original Paper
  • 12 Downloads

Abstract

Electric field effects on the kinetics of SiO2 formation, and the growth of silica nanoparticles formed in the flame (fumed silica) are studied theoretically and computationally, considering combustion of SiCl4 in the H2/O2 flame. An existing mechanism for the gas-phase part of this flame synthesis reaction is improved and used to derive instantaneous concentrations of the involved species. Quantum (DFT) computations are used to obtain thermodynamic data required for the calculation of equilibrium concentrations and reaction rate constants, assuming an overall (high temperature) equilibrium state. Kinetics equations based on a modified 43-step 24-species mechanism are established and solved to obtain concentrations at different temperatures and EF strengths. These concentrations are used as inputs for the Monte Carlo simulation of the growth of silica nanoparticles, considering also possibility of atomic displacements and vacancies. Effects of homogeneous electric field of different strengths on the growth of silica nanoparticles are investigated. Results of this study show that electric field changes the preferences of different paths of the mechanism of this flame synthesis reaction and changes composition of the flame via controlling orientation of the dipolar species, which consequently determine characteristics of the grown silica nanoparticles. Furthermore, EF effect is larger at lower temperatures.

Graphical abstract

Keywords

Nanosilica Flame synthesis Growth Electric field Kinetics Monte Carlo simulation 

Notes

Funding

This research is partially supported by Iranian Nanotechnology Initiative Council.

Supplementary material

13738_2019_1591_MOESM1_ESM.docx (1.8 mb)
Supplementary material 1 (DOCX 1850 KB)

References

  1. 1.
    P. Roth, Proc. Combust. Inst. 31, 1773 (2007)CrossRefGoogle Scholar
  2. 2.
    R. Yue, D. Meng, Y. Ni, Y. Jia, G. Liu, J. Yang, H. Liu, X. Wu, Y. Chen, Powder Technol. 235, 909 (2013)CrossRefGoogle Scholar
  3. 3.
    H.K. Kammler, L. Mädler, S.E. Pratsinis, Chem. Eng. Technol. 24, 583 (2001)CrossRefGoogle Scholar
  4. 4.
    L. Mädler, W.J. Stark, S.E. Pratsinis, J. Appl. Phys. 92, 6537 (2002)CrossRefGoogle Scholar
  5. 5.
    H. Torabmostaedi, T. Zhang, Chem. Eng. Res. Des. 92, 2470 (2014)CrossRefGoogle Scholar
  6. 6.
    K. Wegner, S.E. Pratsinis, Chem. Eng. Sci. 58, 4581 (2003)CrossRefGoogle Scholar
  7. 7.
    B. Buesser, S.E. Pratsinis, Annu. Rev. Chem. Biomol. Eng. 3, 103 (2012)CrossRefGoogle Scholar
  8. 8.
    G. Beaucage, H.K. Kammler, R. Mueller, R. Strobel, N. Agashe, S.E. Pratsinis, T. Narayanan, Nat. Mater. 3, 370 (2004)CrossRefGoogle Scholar
  9. 9.
    M.T. Swihart, Curr. Opin. Colloid Interface Sci. 8, 127 (2003)CrossRefGoogle Scholar
  10. 10.
    L. Mädler, H. Kammler, R. Mueller, S.E. Pratsinis, J. Aerosol Sci. 33, 369 (2002)CrossRefGoogle Scholar
  11. 11.
    C.C. Carcouët, M.W. Van de Put, B. Mezari, P.C. Magusin, J. Laven, P.H. Bomans, H. Friedrich, A.C.C. Esteves, N.A. Sommerdijk, R.A. Van Benthem, Nano Lett. 14, 1433 (2014)CrossRefGoogle Scholar
  12. 12.
    V. Raman, R.O. Fox, Annu. Rev. Fluid Mech. 48, 159 (2016)CrossRefGoogle Scholar
  13. 13.
    B. Buesser, A.J. Gröhn, Chem. Eng. Technol. 35, 1133 (2012)CrossRefGoogle Scholar
  14. 14.
    B. Sun, S. Pokhrel, D.R. Dunphy, H. Zhang, Z. Ji, X. Wang, M. Wang, Y.P. Liao, C.H. Chang, J. Dong, ACS Nano 9, 9357 (2015)CrossRefGoogle Scholar
  15. 15.
    C.C. Liu, G.E. Maciel, J. Am. Chem. Soc. 118, 5103 (1996)CrossRefGoogle Scholar
  16. 16.
    R. Pristavita, R.J. Munz, T. Addona, Ind. Eng. Chem. Res. 47, 6790 (2008)CrossRefGoogle Scholar
  17. 17.
    S.E. Pratsinis, Prog. Energy Combust. Sci. 24, 197 (1998)CrossRefGoogle Scholar
  18. 18.
    H. Zhang, D.R. Dunphy, X. Jiang, H. Meng, B. Sun, D. Tarn, M. Xue, X. Wang, S. Lin, Z. Ji, J. Am. Chem. Soc. 134, 15790 (2012)CrossRefGoogle Scholar
  19. 19.
    M. Choi, J. Cho, J. Lee, H. Kim, J. Nanopart. Res. 1, 169 (1999)CrossRefGoogle Scholar
  20. 20.
    A. Camenzind, H. Schulz, A. Teleki, G. Beaucage, T. Narayanan, S.E. Pratsinis, Eur. J. Inorg. Chem. 2008, 911 (2008)CrossRefGoogle Scholar
  21. 21.
    S. Shekar, M. Sander, R.C. Riehl, A.J. Smith, A. Braumann, M. Kraft, Chem. Eng. Sci. 70, 54 (2012)CrossRefGoogle Scholar
  22. 22.
    W. Yao, L. Zheng, H. Zhang, Int. J. Heat Mass Transf. 81, 797 (2015)CrossRefGoogle Scholar
  23. 23.
    W. Widiyastuti, A. Purwanto, W.N. Wang, F. Iskandar, H. Setyawan, K. Okuyama, AlChE. J. 55, 885 (2009)CrossRefGoogle Scholar
  24. 24.
    M.L. Eggersdorfer, D. Kadau, H.J. Herrmann, S.E. Pratsinis, Langmuir 27, 6358 (2011)CrossRefGoogle Scholar
  25. 25.
    Y. Ji, H.Y. Sohn, H.D. Jang, B. Wan, T.A. Ring, J. Am. Ceram. Soc. 90, 3838 (2007)Google Scholar
  26. 26.
    L. Jin, S.M. Auerbach, P.A. Monson, J. Phys. Chem. Lett. 3, 761 (2012)CrossRefGoogle Scholar
  27. 27.
    M. Goodson, M. Kraft, J. Comput. Phys. 183, 210 (2002)CrossRefGoogle Scholar
  28. 28.
    R. Alvarez, L. Vazquez, R. Gago, A. Redondo-Cubero, J. Cotrino, A. Palmero, J. Phys. D Appl. Phys. 46, 395303 (2013)CrossRefGoogle Scholar
  29. 29.
    V.S. Buddhiraju, V. Runkana, J. Aerosol Sci. 43, 1 (2012)CrossRefGoogle Scholar
  30. 30.
    L. Lin, Q. Wang, Plasma Chem. Plasma Process. 35, 925 (2015)CrossRefGoogle Scholar
  31. 31.
    I. Levchenko, K.K. Ostrikov, J. Zheng, X. Li, M. Keidar, K.B. Teo, Nanoscale 8, 10511 (2016)CrossRefGoogle Scholar
  32. 32.
    F. Jérôme, Curr. Opin. Green Sustain. Chem. 2, 10 (2016)CrossRefGoogle Scholar
  33. 33.
    G. Saito, T. Akiyama, J. Nanomater. 16, 299 (2015)Google Scholar
  34. 34.
    S. Samal, J. Clean. Prod. 142, 3131 (2017)CrossRefGoogle Scholar
  35. 35.
    U.R. Kortshagen, R.M. Sankaran, R.N. Pereira, S.L. Girshick, J.J. Wu, E.S. Aydil, Chem. Rev. 116, 11061 (2016)CrossRefGoogle Scholar
  36. 36.
    P. Peng, Y. Li, Y. Cheng, S. Deng, P. Chen, R. Ruan, Plasma Chem. Plasma Process. 36, 1201 (2016)CrossRefGoogle Scholar
  37. 37.
    Z. Tan, P. Ai, J. Energy Inst. 90, 864–874 (2017)CrossRefGoogle Scholar
  38. 38.
    C. Rehmet, T. Cao, Y. Cheng, Plasma Sources Sci. Technol. 25, 025011 (2016)CrossRefGoogle Scholar
  39. 39.
    D.S. Kozak, R.A. Sergiienko, E. Shibata, A. Iizuka, T. Nakamura, Sci. Rep. 6, 21178 (2016)CrossRefGoogle Scholar
  40. 40.
    B. Alqasem, N. Yahya, S. Qureshi, M. Irfan, Z.U. Rehman, H. Soleimani, Mater. Sci. Eng. B 217, 49 (2017)CrossRefGoogle Scholar
  41. 41.
    S. Bianconi, M. Boselli, M. Gherardi, V. Colombo, J. Phys. D Appl. Phys. 50, 165204 (2017)CrossRefGoogle Scholar
  42. 42.
    H.K. Kammler, S.E. Pratsinis, Chem. Eng. Process: Process Intensif. 39, 219 (2000)CrossRefGoogle Scholar
  43. 43.
    G. Xiong, A. Kulkarni, Z. Dong, S. Li, D.T. Stephen, Proc. Combust. Inst. 36, 1065 (2017)CrossRefGoogle Scholar
  44. 44.
    J.L. Katz, C.H. Hung, Combust. Sci. Technol. 82, 169 (1992)CrossRefGoogle Scholar
  45. 45.
    B. Hannebauer, F.Z. Menzel, Anorg. Allg. Chem. 629, 1485 (2003)CrossRefGoogle Scholar
  46. 46.
    T. Moore, B. Brady, L.R. Martin, Combust. Flame 146, 407 (2006)CrossRefGoogle Scholar
  47. 47.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03. (Gaussian, Inc., Wallingford, 2004)Google Scholar
  48. 48.
    Taken from the official NIST website at http://webbook.nist.gov/chemistry. Accessed 7 Apr 2015
  49. 49.
    T. Takahashi, K. Hagiwara, Y. Egashira, H. Komiyama, J. Electrochem. Soc. 143, 1355 (1996)CrossRefGoogle Scholar
  50. 50.
    V.I. Babushok, W. Tsang, D.R. Burgess, M.R. Zachariah, Symp. (International) Combust. 27, 2431 (1998)CrossRefGoogle Scholar
  51. 51.
    MATLAB, All Data Processing was Performed Off-Line Using a Commercial Software Package (MATLAB 7.1) (The MathWorks Inc., Natick, 2010)Google Scholar
  52. 52.
    P.V. Komarov, Y.T. Chiu, S.M. Chen, P. Reineker, Macromol. Theory Simul. 19, 64 (2010)Google Scholar
  53. 53.
    G. Craciun, M. Feinberg, SIAM J. Appl. Math. 66, 1321 (2006)CrossRefGoogle Scholar
  54. 54.
    O.N. Temkin, D.G. Bonchev, J. Chem. Educ. 69, 544 (1992)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2019

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of IsfahanIsfahanIslamic Republic of Iran

Personalised recommendations