Advertisement

Synthesis, structure and optical properties of novel double penetration polypseudorotaxane compound templated by branched divalent cation template

  • Fu-Rong Wang
  • Su-Min Li
  • Yun-Yin Niu
  • Hong-Wei Hou
Original Paper
  • 5 Downloads

Abstract

This study is directed to branched cationic template, 1,3-bis(4-cyanopyridine) propane bromine salt (Bcpyp·2Br), which connected by metal pseudohalides to form novel double penetration polymeric compound: {(Bcpyp)[Cu2(SCN)3.33·Br0.68]·0.68H2O} (1). The structure was determined by single crystal X-ray diffraction analysis and further characterized by infrared spectra (IR), elemental analysis, powder X-ray diffraction (PXRD), and thermogravimetric (TG) analysis. Compound 1 also shows the better photocatalysis ability of degrading methylene blue (MB) than degrading rhodamine(RhB) and methyl orange(MO) in water under 500 W Xe vapor lamp irradiation.

Keywords

1,3-Bis(4-cyanopyridine) propane bromine salt Double penetration polymer Inorganic–organic hybrid Photocatalysis 

Notes

Acknowledgements

Research efforts in the Niu group are supported by the National Science Foundation of China (no. 21671177).

Supplementary material

13738_2018_1568_MOESM1_ESM.cif (17 kb)
Supporting information: important crystallographic data for 1. CCDC reference number: 1582772. This data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html, or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: t44 1223 336 033 or Email: deposit@ccdc.cam.ac.uk. (CIF 16 KB)

References

  1. 1.
    S.R. Batten, R. Robson, Angew. Chem. Int. Ed. 37(11), 1460–1494 (1998)CrossRefGoogle Scholar
  2. 2.
    Y. Chen, Z. Yang, C.X. Guo, C.Y. Ni, H.X. Li, Z.G. Ren, J.P. Lang, Cryst. Eng. Commun. 13, 243–250 (2011)CrossRefGoogle Scholar
  3. 3.
    H.R. Zhao, D.P. Li, X.M. Ren, Y. Song, W.Q. Jin, J. Am. Chem. Soc. 132(1), 18–19 (2010)CrossRefPubMedGoogle Scholar
  4. 4.
    O.R. Evans, W.B. Lin, Acc. Chem. Res. 35(7), 511–522 (2002)CrossRefPubMedGoogle Scholar
  5. 5.
    D. Liu, J.P. Lang, B.F. Abrahams, J. Am. Chem. Soc. 133(29), 11042–11045 (2011)CrossRefPubMedGoogle Scholar
  6. 6.
    M.S. Chen, M. Chen, S. Takamizawa, T. Okamura, J. Fan, W.Y. Sun, Chem. Commun. 47(13), 3787–3789 (2011)CrossRefGoogle Scholar
  7. 7.
    M.M. Chowdhry, D.M. Mingos, A.J.P. White, D.J. Williams, Chem. Commun. 0(8), 899–900 (1996)CrossRefGoogle Scholar
  8. 8.
    R.D. Astumian, Chem. Sci. 8, 840–845(2017)CrossRefPubMedGoogle Scholar
  9. 9.
    M. Xue, Y. Yang, X.D. Chi, X.Z. Yan, F.H. Huang, Chem. Rev. 115(15), 7398–7501 (2015)CrossRefPubMedGoogle Scholar
  10. 10.
    C.J. Zhang, S.J. Li, J.Q. Zhang, K.L. Zhu, N. Li, F.H. Huang, Org. Lett. 9(26), 5553–5556 (2007)CrossRefPubMedGoogle Scholar
  11. 11.
    Z.B. Zhang, C.Y. Han, G.C. Yu, F.H. Huang, Chem. Sci. 3(10), 3026–3031 (2012)CrossRefGoogle Scholar
  12. 12.
    Z. Xue, M.F. Mayer, J. Am. Chem. Soc. 132(10), 3274–3276 (2010)CrossRefPubMedGoogle Scholar
  13. 13.
    Z. Li, Chin. J. Org. Chem. 20(5), 655–662 (2000)Google Scholar
  14. 14.
    M. Hmadeh, L. Fang, A. Trabolsi, M. Elhabiri, A.M.A. Gary, J.F. Stoddart, J. Mater. Chem. 20(17), 3422–3430 (2010)CrossRefGoogle Scholar
  15. 15.
    M.E. Belowich, C. Valente, R.A. Smaldone, D.C. Friedman, J. Thiel, L. Cronin, J.F. Stoddart, J. Am. Chem. Soc. 134(11), 5243–5261 (2012)CrossRefPubMedGoogle Scholar
  16. 16.
    A. Harada, A. Hashidzume, H. Yamaguchi, Y. Takashima, Chem. Rev. 109(11), 5974–6023 (2009)CrossRefPubMedGoogle Scholar
  17. 17.
    A. Harada, M. Kamachi, Macromolecules. 23(10), 2821–2823 (1990)CrossRefGoogle Scholar
  18. 18.
    Y.H. Ko, H. Kim, Y. Kim, K. Kim, Angew. Chem. Int. Ed. 47(22), 4106–4109 (2008)CrossRefGoogle Scholar
  19. 19.
    J.J. Gassensmith, J.M. Baumes, B.D. Smith, Chem. Commun. 42, 6329–6338 (2009)CrossRefGoogle Scholar
  20. 20.
    L. Li, L. Zhu, Z.C. Yue, W.L. Zhang, B. Zhang, Y.Y. Niu, H.W. Hou, Cryst. Eng. Commun. 15(42), 8395–8399 (2013)CrossRefGoogle Scholar
  21. 21.
    M. Xiao, Y.B. Lu, Z.Y. Li, Y.Y. Niu, J. Cluster Sci. 29, 1039–1049 (2018)CrossRefGoogle Scholar
  22. 22.
    Y.B. Lu, C.H. Wang, H.J. Du, Y.Y. Niu, Inorg. Chim. Acta. 450, 154–161 (2016)CrossRefGoogle Scholar
  23. 23.
    L. Li, J.M. Yue, Y.Z. Qiao, Y.Y. Niu, H.W. Hou, Cryst. Eng. Commun. 15(19), 3835–3842(2013)CrossRefGoogle Scholar
  24. 24.
    C.H. Wang, H.J. Du, Y.B. Lu, M.M. Xu, B.L. Wu, Y.Y. Niu, H.W. Hou, Cryst. Growth Des. 16(5), 2487–2491 (2016)CrossRefGoogle Scholar
  25. 25.
    G.M. Sheldrick, SADABS, Program for Siemens area detector absorption correction (University of Göttingen, Germany, 1996)Google Scholar
  26. 26.
    S. Fiori, I.T.A. Schuquel, I.N. da Silva, M.J. Politi, L.H. Catalani, H. Chaimovich, E. Meyera, N. Hioka, J. Braz. Chem. Soc. 22(9), 1644–1648 (2011)Google Scholar
  27. 27.
    O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard, H. Puschmann. OLEX2: a complete structure solution, refinement and analysis program. Appl. Cryst. 42, 339 (2009)CrossRefGoogle Scholar
  28. 28.
    G.M. Sheldrick, SHELXTL-97, Program for Crystal Structure Refinement (University of Gottingen, Germany, 1997)Google Scholar
  29. 29.
    Y.Y. Niu, X.C. Liu, H.W. Hou, Y.T. Fan, S.W. Ng, Acta Cryst. E. 63(7), m1894 (2007)CrossRefGoogle Scholar
  30. 30.
    X.C. Liu, J. Shi, Y.Y. Niu, N. Xu, S.W. Ng, Acta Cryst. E. 63(7), m1781 (2007)CrossRefGoogle Scholar
  31. 31.
    W.J. Wang, J.M. Yue, Y.Y. Niu, S.W. Ng, Acta Cryst. E. 67(Pt 2), m158 (2011)CrossRefGoogle Scholar
  32. 32.
    Y.Y. Niu, B.L. Wu, X.L. Guo, Y.L. Song, X.C. Liu, H.Y. Zhang, H.W. Hou, C.Y. Niu, S.W. Ng, Cryst. Growth Des. 8(7), 2393–2401 (2008)CrossRefGoogle Scholar
  33. 33.
    C.H. Wang, M. Liu, Y.Y. Niu, Inorg. Chim. Acta. 429, 81–86 (2015)CrossRefGoogle Scholar
  34. 34.
    M. Berrada, Z. Anbaoui, N. Lajrhed, M. Berrada, N. Knouzi, Chem. Mater. 9(9), 1989 (1997)CrossRefGoogle Scholar
  35. 35.
    L. Lin, C. Deng, G.P. Lin, Y.Z. Wang, Ind. Eng. Chem. Res. 54(21), 5643–5655 (2015)CrossRefGoogle Scholar
  36. 36.
    X. Li, F.Y. Qu. Synthesis of Titanium Dioxide-Based Composites and Study of Their Visible Light Catalysis Performance. Master Thesis, pp. 1–57 (2016)Google Scholar
  37. 37.
    T.T. Li, S.L. Luo. Preparation of Composite Photocatalyst Containing Bismuth Oxide and Its Photocatalytic Degradation of Organic Pollutants. Master Thesis, pp. 1–104 (2015)Google Scholar

Copyright information

© Iranian Chemical Society 2018

Authors and Affiliations

  1. 1.College of Chemistry and Molecular EngineeringZhengzhou UniversityHenanPeople’s Republic of China

Personalised recommendations