Advertisement

Fabrication of a new peroxyoxalate chemiluminescence system containing the Cy3 fluorophore and its application to carvedilol detection

  • Sayed Yahya Kazemi
  • Pourya Biparva
Original Paper
  • 7 Downloads

Abstract

Cy3 is a dye that has been widely applied in fluorescence microscopy and single molecule detection due to its low hydrophobicity and intense fluorescence emission. As a new application, this study proposes using Cy3 as the fluorophore of a peroxyoxalate chemiluminescence system. The system relies on the oxidative reaction of bis-(2,4,6-trichlorophenyl) oxalate (TCPO) with H2O2 in the presence of imidazole, as the catalyst, to produce dioxetane via a chemically initiated electron exchange luminescence (CIEEL) process, excite Cy3 by the excess energy of the dioxetane and permit Cy3 to emit yellow light. The chemiluminescence behavior of the system is investigated using different concentrations of TCPO, imidazole, the oxidant and Cy3 and by considering non-linear least squares curve fitting of the obtained intensity–time profiles into the pooled intermediate model. The evaluated kinetic parameters include experimental and theoretical maximum intensity, the rise and fall rate constants of the chemiluminescence process, experimental and theoretical time required to reach the maximum intensity and total emission yield. Finally, the developed system is adopted to detect a drug, i.e., carvedilol, in different pharmaceuticals. Under the optimal conditions, the system can provide a linear response for determination of 3 × 10− 7 to 3 × 10− 5 M carvedilol (r > 0.9869, n = 6) and a detection limit of 1.21 × 10− 7 M. The relative standard deviation of the detection results for six repetitive determinations is below 3.47% and the obtained recoveries are 99.6% and 101.9%.

Keywords

Cy3 Peroxyoxalate chemiluminescence Fluorophore Carvedilol 

Notes

Acknowledgements

The authors thank the Sari Agricultural Sciences and Natural Resources University, Iran, for all the support provided. This work was funded by grant number 01-1396-01.

References

  1. 1.
    E.A. Chandross, Tetrahed. Lett. 4, 761 (1963)CrossRefGoogle Scholar
  2. 2.
    M.M. Rauhut, L.J. Bollyky, B.G. Roberts, M. Loy, R.H. Whitman, A.V. Iannotta, A.M. Semsel, R.A. Clarke, J. Am. Chem. Soc. 89, 6515 (1967)CrossRefGoogle Scholar
  3. 3.
    M.M. Rauhut, Acc. Chem. Res. 2, 80 (1969)CrossRefGoogle Scholar
  4. 4.
    A.V. Romanyuk, I.D. Grozdova, A.A. Ezhov, N.S.M. Nubarov, Sci.Rep 7, 3410 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    L.F. Ciscato, F.H. Bartoloni, E.L. Bastos, W.J. Baader, J. Org. Chem. 74, 8974 (2009)CrossRefPubMedGoogle Scholar
  6. 6.
    F.J. Alvarez, N.J. Parekh, B. Matuszewski, R.S. Givens, T. Higuchi, R.L. Schowen, J. Am. Chem. Soc. 108, 6435 (1986)CrossRefGoogle Scholar
  7. 7.
    M.C. Cabello, O.A.A.El Seoud, W.J. Baader, J. Photochem. Photobiol. A. 367, 471 (2018)CrossRefGoogle Scholar
  8. 8.
    M. Tsunodaa, K. Imai, Anal. Chim. Acta 541, 13 (2005)CrossRefGoogle Scholar
  9. 9.
    S.Y. Kazemi, J. Iran. Chem. Soc. 10, 915 (2013)CrossRefGoogle Scholar
  10. 10.
    X. Zhang, Y. Zhao, H. Zhou, B. Qu, Biosens. Bioelectron. 26, 2737 (2011)CrossRefPubMedGoogle Scholar
  11. 11.
    L. Gámiz-Gracia, A.M. García-Campaña, F. Alés, L. Barrero, Cuadros, Rodríguez, Anal.Bioanal. Chem. 377, 281 (2003)CrossRefPubMedGoogle Scholar
  12. 12.
    S.Y. Kazemi, S.M. Abedirad, S.H. Zali, M. Amiri, J. Lumin. 132, 1226 (2012)CrossRefGoogle Scholar
  13. 13.
    S.Y. Kazemi, S.M. Abedirad, Z. Vaezi, M.R. Ganjali, Dyes Pigm. 95, 751 (2012)CrossRefGoogle Scholar
  14. 14.
    Y. N.Cai, D.Q. Yang, F.N. Chen, Microchem. J. 144, 345 (2018)CrossRefGoogle Scholar
  15. 15.
    M. Shamsipur, M.J. Chaichi, A.R. Karami, Spectrochim. Acta A 59, 511 (2003)CrossRefGoogle Scholar
  16. 16.
    A. Iqbal, S. Arslan, B. Okumus, T.J. Wilson, G. Giraud, D.G. Norman, T. Ha, D.M.J. Lilley, PNAS 105, 11176 (2008)CrossRefPubMedGoogle Scholar
  17. 17.
    L.A. Ernst, R.K. Gupta, R.B. Mujumdar, A.S. Waggoner, Cytometry. 10, 3 (1989)CrossRefPubMedGoogle Scholar
  18. 18.
    S.R. Mujumdar, R.B. Mujumdar, C.M. Grant, A.S. Waggoner, Bioconjugate Chem. 7, 356 (1996)CrossRefGoogle Scholar
  19. 19.
    T. Jonsson, K. Irgum, Anal. Chem. 72, 1373 (2000)CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    M. Emteborg, E. Ponten, K. Irgum, Anal. Chem. 69, 2109 (1997)CrossRefGoogle Scholar
  21. 21.
    A.G. Hadd, A.L. Robinson, K.L. Rowlen, J.W. Birks, J. Org. Chem. 63, 3023 (1998)CrossRefGoogle Scholar
  22. 22.
    M. Orlovic, R.L. Schowen, R.S. Givens, F. Alvarez, B. Matuszewski, N. Parekh, J. Org. Chem. 54, 3606 (1989)CrossRefGoogle Scholar
  23. 23.
    J.L. Dye, V.A. Nicely, J. Chem. Educ. 48, 443 (1971)CrossRefGoogle Scholar
  24. 24.
    A.N. Fletcher, C.A. Heller, Photochem. Photobiol. 4, 1051 (1963)CrossRefGoogle Scholar
  25. 25.
    O. Stern, M. Volmer, Phys. Z. 20, 183 (1919)Google Scholar
  26. 26.
    P. van Zoonen, H. Bock, C. Gooijer, N.H. Velthorst, R.W. Frei, Anal. Chim. Acta 200, 131 (1987)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2018

Authors and Affiliations

  1. 1.Department of Basic SciencesSari Agricultural Sciences and Natural Resources UniversitySariIran

Personalised recommendations