Advertisement

Visible-light-responsive bismuth oxybromide/graphite-like C3N4 hybrid material and its application in photocatalysis via internal electric field

  • Dongfang Zhang
  • Jiaxun Wang
Original Paper
  • 6 Downloads

Abstract

In this work, we propose a facile route to obtain BiOBr/ graphite-like C3N4 hybrid material, which was constructed by in situ depositing BiOBr onto the surface of g-C3N4 as a template via self-assembly procedure at room temperature. This method describes the use of g-C3N4/BiOBr nanocomposite for the superior photocatalytic performances under visible light excitation (λ > 420 nm). The crystalline phase, morphology, textile structure and components of the samples were studied by several tools such as X-ray diffraction, transmission electron microscopy, N2 adsorption–desorption, energy dispersive X-ray spectrum, Fourier transform infrared spectroscopy and Raman spectroscopy. The optical, photoelectrochemical properties and band structure were measured by ultraviolet–visible diffuse reflectance spectroscopy, steady-state photoluminescence spectra, photocurrent response analysis, electrochemical impedance spectra and valence-band X-ray photoelectron spectroscopy techniques, respectively. In addition, the catalytic activities of the hetero-structural material were broadly investigated and compared with single BiOBr or g-C3N4 alone in the same reaction. The as-obtained BiOBr/g-C3N4 composite showed distinctive advantages over BiOBr alone and universality for various substrate, i.e., dichloronaphthol degradation and reduction efficiency of Cr (VI) over BiOBr/g-C3N4 was increased by up to 3 and 2.5 times, respectively. The enhanced photocatalytic activity of the as-prepared BiOBr/g-C3N4 complex was mainly contributed to the effective charge transfer, which can further cause the establishment of the internal electric field in the interface between BiOBr and g-C3N4 to boost the space charge separation. This work gives a new route for designing high efficient semiconductor hybrid photocatalyst with broad absorption region as well as quick charge separation.

Keywords

BiOBr Graphite-like C3N4 Self-assembly Photoelectrochemical Internal electric field 

Notes

Acknowledgements

This work was supported by Natural Science Foundation of Hubei Province of China (Project No. 2011CDB148) and the Fundamental Research Funds for the Central Universities (Project no: 2013QC026).

Supplementary material

13738_2018_1559_MOESM1_ESM.doc (7.1 mb)
Supplementary material 1 (DOC 7307 KB)

References

  1. 1.
    H. Li, C.L. Mao, H. Shang, Z.P. Yang, Z.H. Ai, L.Z. Zhang, Nanoscale. 10, 15429 (2018)CrossRefGoogle Scholar
  2. 2.
    J.L. Zhang, Y.M. Wu, M.Y. Xing, S.A.K. Leghari, S. Sajjad, Energy Environ. Sci. 3, 715 (2010)CrossRefGoogle Scholar
  3. 3.
    J. Li, Y. Yu, L.Z. Zhang, Nanoscale. 6, 8473 (2014)CrossRefGoogle Scholar
  4. 4.
    J. Jiang, K. Zhao, X.Y. Xiao, L.Z. Zhang, J. Am. Chem. Soc. 134, 4473 (2012)CrossRefGoogle Scholar
  5. 5.
    J. Jiang, H. Li, L.Z. Zhang, Chem. Eur. J. 18, 6360 (2012)CrossRefGoogle Scholar
  6. 6.
    N. Wu, H.H. Wei, L.Z. Zhang, Environ. Sci. Technol. 46, 419 (2012)CrossRefGoogle Scholar
  7. 7.
    G.H. Dong, L.Z. Zhang, J. Mater. Chem. 22, 1160 (2012)CrossRefGoogle Scholar
  8. 8.
    F.L. Jia, F.F. Wang, Y. Lin, L.Z. Zhang, Chem. Eur. J. 17, 14603 (2011)CrossRefGoogle Scholar
  9. 9.
    M.Y. Liu, L.Z. Zhang, K.W. Wang, Z. Zheng, CrystEngComm. 13, 5460 (2011)CrossRefGoogle Scholar
  10. 10.
    S.X. Ge, L.Z. Zhang, Z. Zheng, J. Nanopart. Res. 13, 4121 (2011)CrossRefGoogle Scholar
  11. 11.
    S.X. Ge, L.Z. Zhang, Environ. Sci. Technol. 45, 3027 (2011)CrossRefGoogle Scholar
  12. 12.
    J. Jiang, L.Z. Zhang, Chem. Eur. J. 17, 3710 (2011)CrossRefGoogle Scholar
  13. 13.
    K.W. Wang, F.L. Jia, Z. Zheng, L.Z. Zhang, Electrochem. Commun. 12, 1764 (2010)CrossRefGoogle Scholar
  14. 14.
    S.X. Ge, H.M. Jia, H.X. Zhao, Z. Zheng, L.Z. Zhang, J. Mater. Chem. 20, 3052 (2010)CrossRefGoogle Scholar
  15. 15.
    Y. Fan, Z.H. Ai, L.Z. Zhang, J. Hazard. Mater. 176, 678 (2010)CrossRefGoogle Scholar
  16. 16.
    H.Y. Xiao, P.N. Li, F.L. Jia, L.Z. Zhang, J. Phys. Chem. C 113, 21034 (2009)CrossRefGoogle Scholar
  17. 17.
    Z.H. Ai, L.Z. Zhang, W.K. Ho, S.C. Lee, J. Phys. Chem. C 113, 20896 (2009)CrossRefGoogle Scholar
  18. 18.
    N. Chen, H. Shang, S.Y. Tao, X.B. Wang, G.M. Zhan, H. Li, Z.H. Ai, J.K. Yang, L.Z. Zhang, Environ. Sci. Technol. 52, 12656 (2018)CrossRefGoogle Scholar
  19. 19.
    H. Li, H. Shang, X.M. Cao, Z.P. Yang, Z.H. Ai, L.Z. Zhang, Environ. Sci. Technol. 52, 8659 (2018)CrossRefGoogle Scholar
  20. 20.
    K. Wang, X.Y. Wu, G.K. Zhang, J. Li, Y. Li, ACS Sustain Chem. Eng. 6, 6682 (2018)CrossRefGoogle Scholar
  21. 21.
    F.L. Jia, C.F. Yu, L.Z. Zhang, Electrochem. Commun. 11, 1944 (2009)CrossRefGoogle Scholar
  22. 22.
    L.F. Xiao, Y.Y. Yang, J. Yin, Q. Li, L.Z. Zhang, J. Power Sources. 194, 1089 (2009)CrossRefGoogle Scholar
  23. 23.
    L.F. Xiao, Y.Q. Zhao, J. Yin, L.Z. Zhang, Chem. Eur. J. 15, 9442 (2009)CrossRefGoogle Scholar
  24. 24.
    H.Y. Xiao, Z.H. Ai, L.Z. Zhang, J. Phys. Chem. C 113, 16625 (2009)CrossRefGoogle Scholar
  25. 25.
    Y.W. Wang, Y. Huang, W.K. Ho, L.Z. Zhang, Z.G. Zou, S.C. Lee, J. Hazard. Mater. 169, 77 (2009)CrossRefGoogle Scholar
  26. 26.
    Y. Huang, W.K. Ho, Z.H. Ai, X. Song, L.Z. Zhang, S.C. Lee, Appl. Catal. B Environ. 89, 398 (2009)CrossRefGoogle Scholar
  27. 27.
    Y.W. Wang, L.Z. Zhang, S. Li, P. Jena, J. Phys. Chem. C 113, 9210 (2009)CrossRefGoogle Scholar
  28. 28.
    H.M. Jia, Z. Zheng, H.X. Zhao, L.Z. Zhang, Z.G. Zou, Mater. Res. Bull. 44, 1312 (2009)CrossRefGoogle Scholar
  29. 29.
    Y.L. Zhang, H.H. Gan, G.K. Zhang, Chem. Eng. J. 172, 936 (2011)CrossRefGoogle Scholar
  30. 30.
    Y.L. Zhang, Y.D. Guo, G.K. Zhang, Y.Y. Gao, Appl. Clay. Sci. 51, 335 (2011)CrossRefGoogle Scholar
  31. 31.
    H. Jin, H.M. Zhang, H.X. Zhong, J.L. Zhang, Energy Environ. Sci. 4, 3389 (2011)CrossRefGoogle Scholar
  32. 32.
    Y.D. Guo, G.K. Zhang, J. Liu, Y.L. Zhang, RSC Adv. 3, 2963 (2013)CrossRefGoogle Scholar
  33. 33.
    Z. Wan, G.K. Zhang, J.T. Wang, Y.L. Zhang, RSC Adv. 3, 19617 (2013)CrossRefGoogle Scholar
  34. 34.
    Y.L. Zhang, D.Y. Li, Y.G. Zhang, X.F. Zhou, S.J. Guo, L.B. Yang, J. Mater. Chem. A 2, 8273 (2014)CrossRefGoogle Scholar
  35. 35.
    Y.J. Wang, H.Y. Zhao, J.X. Gao, G.H. Zhao, Y.G. Zhang, Y.L. Zhang, J. Phys. Chem. C 116, 7457 (2012)CrossRefGoogle Scholar
  36. 36.
    Y.N. Wang, K.J. Deng, L.Z. Zhang, J. Phys. Chem. C 115, 14300 (2011)CrossRefGoogle Scholar
  37. 37.
    J. Liu, G.K. Zhang, Phys. Chem. Chem. Phys. 16, 8178 (2014)CrossRefGoogle Scholar
  38. 38.
    X.P. Huang, X.J. Hou, J.C. Zhao, L.Z. Zhang, Appl. Catal. B Environ. 181, 127 (2016)CrossRefGoogle Scholar
  39. 39.
    Q. Huang, M.H. Cao, Z.H. Ai, L.Z. Zhang, Appl. Catal. B Environ. 162, 319 (2015)CrossRefGoogle Scholar
  40. 40.
    Y.D. Guo, G.K. Zhang, H.H. Gan, Y.L. Zhang, Dalton Trans. 41, 12697 (2012)CrossRefGoogle Scholar
  41. 41.
    G.K. Zhang, Y.Y. Gao, Y.L. Zhang, Y.D. Guo, Environ. Sci. Technol. 44, 6384 (2010)CrossRefGoogle Scholar
  42. 42.
    Y. Mu, Z.H. Ai, L.Z. Zhang, Environ. Sci. Technol. 51, 8101 (2017)CrossRefGoogle Scholar
  43. 43.
    H. Xu, L.Z. Zhang, J. Phys. Chem. C 114, 11534 (2010)CrossRefGoogle Scholar
  44. 44.
    J. Jiang, X. Zhang, P.B. Sun, L.Z. Zhang, J. Phys. Chem. C 115, 20555 (2011)CrossRefGoogle Scholar
  45. 45.
    Y.L. Zhang, L.J. Deng, G.K. Zhang, H.H. Gan, Colloid. Surf. A 384, 137 (2011)CrossRefGoogle Scholar
  46. 46.
    Y.L. Zhang, D.J. Wang, G.K. Zhang, Chem. Eng. J. 173, 1 (2011)CrossRefGoogle Scholar
  47. 47.
    H. Xu, L.Z. Zhang, J. Phys. Chem. C 114, 940 (2010)CrossRefGoogle Scholar
  48. 48.
    X. Zhang, L.Z. Zhang, J. Phys. Chem. C 114, 18198 (2010)CrossRefGoogle Scholar
  49. 49.
    X. Zhang, L.Z. Zhang, T.F. Xie, D.J. Wang, J. Phys. Chem. C 113, 7371 (2009)CrossRefGoogle Scholar
  50. 50.
    H. Li, F. Qin, Z.P. Yang, X.M. Cui, J.F. Wang, L.Z. Zhang, J. Am. Chem. Soc. 139, 3513 (2017)CrossRefGoogle Scholar
  51. 51.
    X.P. Huang, X.J. Hou, X. Zhang, K. Rosso, L.Z. Zhang, Environ. Sci. Nano. 5, 1790 (2018)CrossRefGoogle Scholar
  52. 52.
    J. Li, G.M. Zhan, Y. Yu, L.Z. Zhang, Nat. Commun. 7, 11480 (2016)CrossRefGoogle Scholar
  53. 53.
    M.Q. Fang, H.M. Jia, W.W. He, Y. Lei, L.Z. Zhang, Z. Zheng, Phys. Chem. Chem. Phys. 17, 13531 (2015)CrossRefGoogle Scholar
  54. 54.
    H. Li, J.G. Shi, K. Zhao, L.Z. Zhang, Nanoscale. 6, 14168 (2014)CrossRefGoogle Scholar
  55. 55.
    H. Li, L.Z. Zhang, Nanoscale. 6, 7805 (2014)CrossRefGoogle Scholar
  56. 56.
    M. Nasira, J.Y. Lei, W. Iqbal, J.L. Zhang, Appl. Surf. Sci. 364, 446 (2016)CrossRefGoogle Scholar
  57. 57.
    Y.L. Peng, L.Z. Wang, Y.D. Liu, H.J. Chen, J.Y. Lei, J.L. Zhang, Eur. J. Inorg. Chem. 40, 4797 (2017)CrossRefGoogle Scholar
  58. 58.
    J. Li, L.J. Cai, J. Shang, Y. Yu, L.Z. Zhang, Adv. Mater. 28, 4059 (2016)CrossRefGoogle Scholar
  59. 59.
    J. Li, K. Zhao, Y. Yu, L.Z. Zhang, Adv. Funct. Mater. 25, 2189 (2015)CrossRefGoogle Scholar
  60. 60.
    H. Li, J. Shang, H.J. Zhu, Z.P. Yang, Z.H. Ai, L.Z. Zhang, ACS Catal. 6, 8276 (2016)CrossRefGoogle Scholar
  61. 61.
    J. Li, H. Li, G.M. Zhan, L.Z. Zhang, Acc. Chem. Res. 50, 112 (2017)CrossRefGoogle Scholar
  62. 62.
    H. Li, J. Shang, Z.H. Ai, L.Z. Zhang, J. Am. Chem. Soc. 137, 6393 (2015)CrossRefGoogle Scholar
  63. 63.
    W. Iqbal, C.Y. Dong, M.Y. Xing, X.J. Tan, J.L. Zhang, Catal. Sci. Technol. 7, 1726 (2017)CrossRefGoogle Scholar
  64. 64.
    H. Li, L. Zhou, L.Z. Wang, Y.D. Liu, J.Y. Lei, J.L. Zhang, Phys. Chem. Chem. Phys. 17, 17406 (2015)CrossRefGoogle Scholar
  65. 65.
    W. Iqbal, B.C. Qiu, J.Y. Lei, L.Z. Wang, J.L. Zhang, M. Anpo, Dalton Trans. 46, 10678 (2017)CrossRefGoogle Scholar
  66. 66.
    C.L. Mao, L.H. Yu, J. Li, J.C. Zhao, L.Z. Zhang, Appl. Catal. B Environ. 224, 612 (2018)CrossRefGoogle Scholar
  67. 67.
    J.Y. Lei, F.H. Liu, L.Z. Wang, Y.D. Liu, J.L. Zhang, RSC Adv. 7, 27377 (2017)CrossRefGoogle Scholar
  68. 68.
    L. Wang, M.H. Cao, Z.H. Ai, L.Z. Zhang, Environ. Sci. Technol. 49, 3032 (2015)CrossRefGoogle Scholar
  69. 69.
    G.H. Dong, K. Zhao, L.Z. Zhang, Chem. Commun. 48, 6178 (2012)CrossRefGoogle Scholar
  70. 70.
    Y.X. Qin, F.H. Song, Z.H. Ai, P.P. Zhang, L.Z. Zhang, Environ. Sci. Technol. 49, 7948 (2015)CrossRefGoogle Scholar
  71. 71.
    J. Zhang, M. Zhang, L. Lin, X. Wang, Angew. Chem. Int. Ed. 54, 6297 (2015)CrossRefGoogle Scholar
  72. 72.
    J. Jiang, L.Z. Zhang, H. Li, W.W. He, J.J. Yin, Nanoscale. 5, 10573 (2013)CrossRefGoogle Scholar
  73. 73.
    N. Chen, Y.H. Huang, X.J. Hou, Z.H. Ai, L.Z. Zhang, Environ. Sci. Technol. 51, 11278 (2017)CrossRefGoogle Scholar
  74. 74.
    K. Wang, G.K. Zhang, J. Li, Y. Li, X.Y. Wu, ACS Appl. Mater. Interfaces. 9, 43704 (2017)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2018

Authors and Affiliations

  1. 1.College of ScienceHuazhong Agricultural UniversityWuhanPeople’s Republic of China

Personalised recommendations