Molecularly imprinted based solid phase microextraction method for monitoring valproic acid in human serum and pharmaceutical formulations

  • Razieh ZakerianEmail author
  • Soleiman Bahar
Original Paper


In this paper, a straightforward method is presented to detect valproic acid after its microextraction. Molecularly imprinted polymer fiber was used in conjunction with chromatography-flame ionization to achieve this goal. A narrow bore silica capillary was adopted as a mold, via the copolymerization of meth acrylic acid–ethylene glycol dimethacrylate imprinted with VPA, to synthesize the fiber. Extraction temperature, extraction time, salt addition, pH, stirring rate, and desorption temperature—all of which are factors that can influence the extraction process—were measured, and adjusted accordingly. Linearity, precision, and detection limits, as analytical elements, were also evaluated under optimum conditions. Readings showed a linear range of 0.03–100 µg L− 1 (r2 = 0.998), and the limit of detection was measured as 0.01 µg L− 1. The established method was then applied in selective detection of valproic acid in tablet, syrup and human serum samples successfully.


Sample preparation Gas chromatography Serum sample Flame ionization detector 



The authors gratefully acknowledge financial support from University of Kurdistan.

Compliance with ethical standards

Conflict of interest

The authors have declared no conflict of interest.

Supplementary material

13738_2018_1551_MOESM1_ESM.docx (137 kb)
Supplementary material 1 (DOCX 136 KB)


  1. 1.
    W. Löscher, Prog. Neurobiol. 58, 31–59 (1999)CrossRefGoogle Scholar
  2. 2.
    A. König Stephan, J. Knolle, S. Friedewald, W. Koelfen, E. Longin, T. Lenz, D. Hannak, Epilepsia 44, 708–711 (2003)CrossRefGoogle Scholar
  3. 3.
    M.A. Farajzadeh, A.A. Matin, K. Farhadi, P. Hashemi, A. Jouyban, Anal. Sci. 25, 875–879 (2009)CrossRefGoogle Scholar
  4. 4.
    A. Abbas Matin, P. Biparva, H. Amanzadeh, K. Farhadi, Talanta 175, 573 (2017)CrossRefGoogle Scholar
  5. 5.
    P. Shahdousti, A. Mohammadi, N. Alizadeh, J. Chromatogr. B 850, 128–133 (2007)CrossRefGoogle Scholar
  6. 6.
    L. Yin, T. Wang, M. Shi, Y. Zhang, J. Sep. Sci. 39, 964–972 (2016)CrossRefGoogle Scholar
  7. 7.
    B.G. De Illiano, A.Q. De Gainzarain, High Resolut Chromatogr. 12, 540–543 (1980)CrossRefGoogle Scholar
  8. 8.
    H. Lu, C. Su, L. Yin, L. Gu et al., J. Pharm. Anal. 6, 112–116 (2016)CrossRefGoogle Scholar
  9. 9.
    E. Ölvecká, M. Koníková, N. Grobuschek, D. Kaniansky, B. Stanislawski, J. Sep. Sci. 26, 693–700 (2003)CrossRefGoogle Scholar
  10. 10.
    T.T.T. Pham, H.H. See, R. Morand, S. Krähenbühl, P.C. Hauser, J. Chromatogr. B 907, 74–78 (2012)CrossRefGoogle Scholar
  11. 11.
    G.K. Belin, S. Krähenbühl, P.C. Hauser, J. Chromatogr. B 847, 205–209 (2007)CrossRefGoogle Scholar
  12. 12.
    D. Yu, J.D. Gordon, J. Zheng, S.K. Panesar et al., J. Chromatogr. B 666, 269–281 (1995)CrossRefGoogle Scholar
  13. 13.
    C.L. Arthur, J. Pawliszyn, Anal. Chem. 62, 2145–2148 (1990)CrossRefGoogle Scholar
  14. 14.
    H. Amanzadeh, Y. Yamini, M.Y. Masoomi, A. Morsali, New J. Chem. 41, 12035–12043 (2017)CrossRefGoogle Scholar
  15. 15.
    A. Mehdinia, F. Roohi, A. Jabbari, M.R. Manafi, Anal. Chim. Acta. 683, 206–211 (2011)CrossRefGoogle Scholar
  16. 16.
    M. Beiranvand, A. Ghiasvand, Chromatographia 80, 1771–1780 (2017)CrossRefGoogle Scholar
  17. 17.
    J. Wang, X. Chen, S. Hu, X. Bai, H. Zhao, Z. Wu, Chromatographia 80, 1467–1473 (2017)CrossRefGoogle Scholar
  18. 18.
    S. Mohammadiazar, A. Roostaie, M. Maghsoodi, M. Maham, Chromatographia 81, 639–647 (2018). CrossRefGoogle Scholar
  19. 19.
    J. Li, Z. Zhang, M. Sun, B. Zhang, C. Fan (2018) Chromatographia CrossRefGoogle Scholar
  20. 20.
    H. Amanzadeh, Y. Yamini, M. Moradi, Anal. Chim. Acta 884, 52–60 (2015)CrossRefGoogle Scholar
  21. 21.
    M. Sun, J. Feng, J. Bu, Wang et al., Talanta 134, 200–205 (2015)CrossRefGoogle Scholar
  22. 22.
    K. Curran, M. Underhill, L.T. Gibson, M. Strlic, Microchem. J. 124, 909–918 (2016)CrossRefGoogle Scholar
  23. 23.
    X. Wang, Y. Wang, X. Qin Y et al, Talanta 140, 102–108 (2015)CrossRefGoogle Scholar
  24. 24.
    Y. Hu, C. Song, G. Li, J. Chromatogr. A 1263, 21–27 (2012)CrossRefGoogle Scholar
  25. 25.
    M. Mei, J. Yu, X. Huang, H. Li, L. Lin, D. Yuan, J. Chromatogr. A 1385, 12–19 (2015)CrossRefGoogle Scholar
  26. 26.
    M. Ghaemmaghami, Y. Yamini, H. Amanzadeh, B. Hosseini Monjezi. Chem. Commun. 54(5), 507–510 (2018)CrossRefGoogle Scholar
  27. 27.
    A. Eshaghi, X. Zhang, F.M. Musteata, H. Bagheri, J. Pawliszyn, Analyst 132, 672–678 (2007)CrossRefGoogle Scholar
  28. 28.
    X. Zhang, D. Zhu, C. Huang, Y. Sun, Y. Lee, Microchem. J. 121, 1–5 (2015)CrossRefGoogle Scholar
  29. 29.
    B. Prasad, B. Tiwari Kh, M. Singh, V. Sharma, et al., J. Chromatogr. A 1198:59–66 (2008)CrossRefGoogle Scholar
  30. 30.
    E. Turiel, J.L. Tadeo, A. Martin-Esteban, Anal. Chem. 79, 3099–3104 (2007)CrossRefGoogle Scholar
  31. 31.
    D.J. Djozan, T. Baheri, J. Chromatogr. A 1166, 16–23 (2007)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceUniversity of KurdistanSanandajIran

Personalised recommendations