Journal of the Iranian Chemical Society

, Volume 16, Issue 3, pp 645–659 | Cite as

Sono-heterogeneous Fenton system for degradation of AB74 dye over a new tetraaza macrocyclic Schiff base cellulose ligand-loaded Fe3O4 nanoparticles

  • Rahma Mehdaoui
  • Laroussi Chaabane
  • Emmanuel Beyou
  • Mohamed Hassen V. BaouabEmail author
Original Paper


The study detailed herein is related to the synthesis of novel tetraaza macrocyclic Schiff base cellulose ligand: (EDA-g-DAC) via condensation reaction of periodate oxidized developed microcrystalline cellulose (DAC) with ethylenediamine (EDA) was reported. Additionally, tetraaza macrocyclic Schiff base cellulose ligand-loaded Fe3O4 nanoparticles: [(EDA-g-DAC)@Fe3O4] was successfully prepared using in situ chemical co-precipitation of coordinated ferric and ferrous ions in the tetraaza macrocyclic Schiff base cellulose ligand: (EDA-g-DAC) under mild conditions. The synthesized compounds were investigated by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscope (SEM), thermogravimetric analysis (TGA) and vibrating sample magnetometer (VSM). [(EDA-g-DAC)@Fe3O4] was of a narrow size distribution, and exhibited ferromagnetic behaviors with saturation magnetization 24.63 emu g−1. The degradation of Indigo Carmine (AB74) over [(EDA-g-DAC)@Fe3O4] was studied using a coupled ultrasound/heterogeneous or sono-heterogeneous Fenton process. More importantly, US + [(EDA-g-DAC)@Fe3O4] + H2O2 were demonstrated for the first time as a high efficient for the degradation of AB74. The pseudo first-order-reaction constant of US + [(EDA-g-DAC)@Fe3O4] + H2O2 were measured to be 0.0979 min−1. Total Organic Carbon (TOC) and Chemical oxygen demand (COD) removal rates are 0% and 98.7%, respectively. Additionally, the [(EDA-g-DAC)@Fe3O4] showed the higher enhanced sonocatalytic degradation of AB74 than other dyes MB and AY17. Furthermore, the catalysts can be easily recycled within 10 s using an external magnetic field and a constant catalytic activity is retained even after five cycles.


Tetraaza macrocyclic Magnetite Sono-heterogeneous Fenton Indigo Carmine (AB74) 



The authors would personally like to thank Philippe CASSAGHAU and all the staffs of the UMR CNRS5223, (Ingénierie des Matériaux Polymères, F-69622 Villeurbanne, France) for their technical help. The authors also would like to thank Pr. BENONISTER David (Oxford University, UK) for English language correction.


  1. 1.
    W. Fan, B. Yung, P. Huang, X. Chen, Chem. Rev. 22, 13566 (2017)CrossRefGoogle Scholar
  2. 2.
    H. Yang, S.J. Bradley, X. Wu, A. Chan, G.I.N. Waterhouse, T. Nann, J. Zhang, P.E. Kruger, S. Ma, S.G. Telfer, ACS Nano. 12, 4594 (2018)CrossRefGoogle Scholar
  3. 3.
    S. Tong, C.A. Quinto, L. Zhang, P. Mohindra, G. Bao, ACS Nano. 11, 6808 (2017)CrossRefGoogle Scholar
  4. 4.
    R. Mehdaoui, A. El Ghali, W. Cheikhrouhou, E. Beyou, M.H.V. Baouab, Iran. Polym. J. 26, 597 (2017). CrossRefGoogle Scholar
  5. 5.
    L. Zhang, W.F. Dong, H.B. Sun, Nanoscale 17, 7664 (2013)CrossRefGoogle Scholar
  6. 6.
    A. Aftabtalab, H. Sadabadi, J. Pet. Environ. Biotechnol. 6, 1 (2015)Google Scholar
  7. 7.
    M. Unni, A.M. Uhl, S. Savliwala, B.H. Savitzky, R. Dhavalikar, N. Garraud, D.P. Arnold, L.F. Kourkoutis, J.S. Andrew, C. Rinaldi, ACS Nano. 11, 2284 (2017)CrossRefGoogle Scholar
  8. 8.
    I.S. Smolkova, N.E. Kazantseva, H. Parmar, V. Babayan, P. Smolka, P. Saha, Mater. Chem. Phys. 155, 178 (2015)CrossRefGoogle Scholar
  9. 9.
    F. Chen, S. Xie, J. Zhang, R. Liu, Mater. Lett. 112, 177 (2013)CrossRefGoogle Scholar
  10. 10.
    J. Safari, Z. Zarnegar, H. Hekmatara, Synth. React. Inorg. 125, 15553 (2015)Google Scholar
  11. 11.
    M. Munaz. M.P. Zahara. J.A. Cases, J.J. Radiguez, Appl. Catat. B. 176, 249 (2015)CrossRefGoogle Scholar
  12. 12.
    R. Gracia, M. Marradi, G. Salerno, R. Pérez-Nicado, A. Pérez-San Vicente, D. Dupin, J. Rodriguez, I. Loinaz, F. Chiodo, C. Nativi, ACS Macro. Lett. 7, 196 (2018)CrossRefGoogle Scholar
  13. 13.
    A. Herrera, L. Vela, G. Morales, Int. J. Chem. Tech. Res. 5, 602 (2016)Google Scholar
  14. 14.
    A. Pirkarami, M.E. Olya. J. Saudi. Chem. Sco. 21, 186 (2017)CrossRefGoogle Scholar
  15. 15.
    V.L. Grimauab, M. Vilasecaa, C.G. Bouzán, Desalin. Water Treart. 57, 6 (2016)Google Scholar
  16. 16.
    X. Hu, B. Liu, Y. Deng, H. Chen, S. Luo, C. Sun, P. Yang, S. Yang, Appl. Catal. 107, 274 (2011)CrossRefGoogle Scholar
  17. 17.
    L. Zhou, H. Zhang, L. Ji, Y. Shao, Y. Li, A. R. S. C. Adv. 4, 24900 (2014)CrossRefGoogle Scholar
  18. 18.
    M.H. Khan, H. Bae, J.Y. Jung, J. Hazard. Mater. 181, 659 (2010)CrossRefGoogle Scholar
  19. 19.
    T. Shahwan, S. Abu Sirriah, S. Nairat, E. Boyac, A.E. Eroglu, Chem. Eng. J. 172, 258 (2011)CrossRefGoogle Scholar
  20. 20.
    N. Pérez, C. Moya, P. Tartaj, A. Labarata, J. Appl. Phys. 4, 121 (2017)Google Scholar
  21. 21.
    H. Zhang, C. Wei, Y. Huang, J. Wang, Ultrason. Sonochem. 30, 61 (2016)CrossRefGoogle Scholar
  22. 22.
    L. Hou, L. Wang, S. Royer, H. Zhang, J. Hazard. Mater. 9, 33 (2015)Google Scholar
  23. 23.
    R.D.C. Soltani, S. Jorfi, H. Ramezani, S. Purfadakari, Ultrason. Sonochem. 28, 69 (2016)CrossRefGoogle Scholar
  24. 24.
    T. Han, L.L. Qu, Z.J. Luo, X.Y. Wu, D.X. Zhang, New. J. Chem. 38, 942 (2014)CrossRefGoogle Scholar
  25. 25.
    D. Rajalxmi, N. Jang, G. Leslie, A.J. Ragauskas, Carbohyd. Res. 345, 284 (2010)CrossRefGoogle Scholar
  26. 26.
    H. Li, B. Wu, C. Mu, W. Lin, Carbohydr. Polym. 84, 881 (2011)CrossRefGoogle Scholar
  27. 27.
    L. Segal, J.J. Creel, A.E. Martin, C.M. Conrad, Text. Res. J. 29, 786 (1959)CrossRefGoogle Scholar
  28. 28.
    M. Maccarini, A. Atreia, C. Innocenti, R. Barbucci, Colloids. Surf. A. 462, 107 (2014)CrossRefGoogle Scholar
  29. 29.
    M. Arlette, G. Jorge, R.V. Medrano, Int. J. Electrochem. Sci. 7, 6142 (2012)Google Scholar
  30. 30.
    J. Lindh, D.O. Carlsson, M. Strømme, A. Mihranyan, Biomacromol 15, 1928 (2014)CrossRefGoogle Scholar
  31. 31.
    S.M.A.S. Keshk, A.M. Ramadan, S. Bondock, Carbohydr. Polym. 127, 246 (2015)CrossRefGoogle Scholar
  32. 32.
    X. Jua, M. Bowdenb, E.E. Browna, X. Zhang, Carbohydr. Polym. 123, 476 (2015)CrossRefGoogle Scholar
  33. 33.
    K. Yoo, B.G. Jeon, S.H. Chun, Nano Lett. 16, 7408 (2016)CrossRefGoogle Scholar
  34. 34.
    J.S. Lee, C.J. Myung, H.Y. Yoon, J.K. Lee, Y.K. Kim, Sci. Rep. 5, 12135 (2015)CrossRefGoogle Scholar
  35. 35.
    S. Upadhyay, K. Parekh, B. Pandey, J. Alloys Compd. 678, 478 (2016)CrossRefGoogle Scholar
  36. 36.
    E.T.M. Nubia, M.A. Garza-Navarro, R. Lucio-Porto, G.G. Domingo, A.T. Alejandro, A. Virgilio, G. González, Mater. Chem. Phys. 141, 735 (2013)CrossRefGoogle Scholar
  37. 37.
    M.I.G. Miranda, C.I.D. Bica, S.M.B. Nachtigall, N. Rehman, S.M.L. Rosa, Kinetical. Thermochim. Acta 565, 65 (2013)CrossRefGoogle Scholar
  38. 38.
    S. El-Sayed, K.H. Mahmoud, A.A. Fatah, A. Hassen, Phys. B. 406, 4068 (2011)CrossRefGoogle Scholar
  39. 39.
    B. Show, N. Mukherjee, A. Mondal. R. S. C. ADV. 2, 1 (2016)Google Scholar
  40. 40.
    E. Ortiz, V.G. Chavéz, C.M. Cortés-Romero, H. Solis, J. Environ. Prot. Sci. 7, 1693 (2016)CrossRefGoogle Scholar
  41. 41.
    T.C. Blanco, G.A. Sierra, H.R. Zea, Rev. Colomb. Quim. 45, 30 (2016)CrossRefGoogle Scholar
  42. 42.
    Z.D. Meng, W.C. Oh, Ultrason. Sonochem. 18, 757 (2011)CrossRefGoogle Scholar
  43. 43.
    O.M. Martinez, J.H. Ramirez, M.L. Toled, Ing. Invest. 2, 30 (2013)Google Scholar
  44. 44.
    K.M. Reza, A. Kury, F. Culshan, Int. J. Environ. Sci. Technol. 7, 793 (2016)Google Scholar
  45. 45.
    H. Hassan, B.H. Hameed, Int. J. Environ. Sci. Technol. 6, 520 (2011)Google Scholar
  46. 46.
    M.A. Voinov, J.O. Sosa Pagán, E. Morrison, T.I. Smirnova, A.I. Smirnov, J. Am. Chem. Soc. 133, 35 (2011)CrossRefGoogle Scholar
  47. 47.
    A. Rahmani, Ultrason. Sonochem. 34, 389 (2017) , CrossRefGoogle Scholar
  48. 48.
    X. Ma, Y. Cheng, Y. Ge, H. Wu, Q. Li, N. Gao, J. Deng, Ultrason. Sonochem 40, 763 (2018)CrossRefGoogle Scholar
  49. 49.
    M.Q. Cai, J. Su, G.H. Lian, X.Q. Wei, C.Y. Dong, H.J. Zhang, M.C. Jin, Z.S. Wei, Ultrason. Sonochem 31, 193 (2016)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2018

Authors and Affiliations

  1. 1.Laboratoire de Microélectroniques et Instrumentations, Faculté des Sciences de MonastirUniversité de MonastirMonastirTunisia
  2. 2.Université Lyon 1, UMR CNRS5223VilleurbanneFrance

Personalised recommendations