Zinc polyoxometalate immobilized on ionic liquid-modified MCM-41: an efficient reusable catalyst for the selective oxidation of alcohols with hydrogen peroxide
- 22 Downloads
Abstract
In this study, Keggin-type polyoxometalate [n-C4H9)4N]x[PW11ZnO39].nH2O was successfully immobilized on imidazole-functionalized ionic liquid-modified mesoporous MCM-41 by physical adsorption. The PW11Zn@MCM-41-Im was characterized by FT-IR, ICP, XRD, SEM, nitrogen adsorption and desorption and DRUV–Vis analysis. The results indicated that ZnPW11 could be successfully immobilized on mesoporous MCM-41-Im. This heterogeneous catalyst showed high catalytic performance and excellent selectivity in the oxidation of alcohols to the corresponding carbonyl groups with hydrogen peroxide. Furthermore, the supported ionic liquid catalyst was recovered by simple filtration and reused in four reaction runs with the preserve of the catalytic activity.
Keywords
Ionic liquid MCM-41 Oxidation alcohols Heterogeneous catalyst Mesoporous materialNotes
Acknowledgements
We are thankful to the Yazd University Research Council for partial support of this work.
Supplementary material
References
- 1.B.F. Mirjalili, M.A. Zolfigol, A. Bamoniri, Z. Zaghaghi, J. Chem. Res. 2003, 273–274 (2003)CrossRefGoogle Scholar
- 2.G. Tojo, M. Fernández, Oxidation of alcohols to aldehydes and ketones, Springer, New York (2006)Google Scholar
- 3.G. Strukul, Catalytic oxidations with hydrogen peroxide as oxidant, Springer Science & Business Media, Dordrecht (2013)Google Scholar
- 4.D.I. Enache, J.K. Edwards, P. Landon, B. Solsona-Espriu, A.F. Carley, A.A. Herzing, M. Watanabe, C.J. Kiely, D.W. Knight, G.J. Hutchings, Science 311, 362–365 (2006)CrossRefGoogle Scholar
- 5.W. Kroutil, H. Mang, K. Edegger, K. Faber, Curr. Opin. Chem. Biol. 8, 120–126 (2004)CrossRefGoogle Scholar
- 6.F. Cardona, C. Parmeggiani, Royal Society of Chemistry, (2014)Google Scholar
- 7.Z. Nadealian, V. Mirkhani, B. Yadollahi, M. Moghadam, S. Tangestaninejad, I. Mohammadpoor-Baltork, J. Coord. Chem. 65, 1071–1081 (2012)CrossRefGoogle Scholar
- 8.R. Hajian, Z. Alghour, Chin. Chem. Lett. 28, 971–975 (2017)CrossRefGoogle Scholar
- 9.A. Dolbecq, E. Dumas, C.R. Mayer, P. Mialane, Chem. Rev. 110, 6009–6048 (2010)CrossRefGoogle Scholar
- 10.X. Lin, F. Liu, H. Li, Y. Yan, L. Bi, W. Bu, L. Wu, Chem. Commun. 47, 10019–10021 (2011)CrossRefGoogle Scholar
- 11.N. Maksimchuk, M. Melgunov, Y.A. Chesalov, J. Mrowiec-Białoń, A. Jarzębski, O. Kholdeeva, J. Catal. 246, 241–248 (2007)CrossRefGoogle Scholar
- 12.R. Hajian, A. Ehsanikhah, Chem. Phys. Lett. 691, 146–154 (2018)CrossRefGoogle Scholar
- 13.R. Hajian, S. Tangestaninejad, M. Moghadam, V. Mirkhani, A.R. Khosropour, C. R. Chim. 15, 975–979 (2012)CrossRefGoogle Scholar
- 14.C.-Y. Chen, S.L. Burkett, H.-X. Li, M.E. Davis, Microporous Mater. 2, 27–34 (1993)CrossRefGoogle Scholar
- 15.B. Kirchner, Ionic liquids, Springer, New york (2009)Google Scholar
- 16.C. Van Doorslaer, J. Wahlen, P. Mertens, K. Binnemans, D. De Vos, Dalton Trans. 39, 8377–8390 (2010)CrossRefGoogle Scholar
- 17.R. Fehrmann, A. Riisager, M. Haumann, Supported ionic liquids: fundamentals and applications, Wiley, Weinheim, (2014)CrossRefGoogle Scholar
- 18.J. Xiong, W. Zhu, W. Ding, L. Yang, M. Zhang, W. Jiang, Z. Zhao, H. Li, RSC Adv. 5, 16847–16855 (2015)CrossRefGoogle Scholar
- 19.Y. Chen, Y.F. Song, ChemPlusChem 79, 304–309 (2014)CrossRefGoogle Scholar
- 20.R. Hajian, S. Tangestaninejad, M. Moghadam, V. Mirkhani, I. Mohammadpoor-Baltork, A.R. Khosropour, J. Coord. Chem. 64, 4134–4144 (2011)CrossRefGoogle Scholar
- 21.B. Wang, J. Zhang, X. Zou, H. Dong, P. Yao, Chem. Eng. J. 260, 172–177 (2015)CrossRefGoogle Scholar
- 22.K. Yamaguchi, C. Yoshida, S. Uchida, N. Mizuno, J. Am. Chem. Soc. 127, 530–531 (2005)CrossRefGoogle Scholar
- 23.R. Tan, C. Liu, N. Feng, J. Xiao, W. Zheng, A. Zheng, D. Yin, Microporous Mesoporous Mater. 158, 77–87 (2012)CrossRefGoogle Scholar
- 24.H. Zhao, L. Zeng, Y. Li, C. Liu, B. Hou, D. Wu, N. Feng, A. Zheng, X. Xie, S. Su, Microporous Mesoporous Mater. 172, 67–76 (2013)CrossRefGoogle Scholar
- 25.H. Wang, L. Fang, Y. Yang, R. Hu, Y. Wang, Appl. Catal. A: Gen. 520, 35–43 (2016)CrossRefGoogle Scholar
- 26.C.M. Tourne, G.F. Tourne, S.A. Malik, T.J.R. Weakley, J. Inorg. Nucl. Chem. 32, 3875–3890 (1970)CrossRefGoogle Scholar
- 27.D. Julião, A.C. Gomes, M. Pillinger, L. Cunha-Silva, B. de Castro, I.S. Gonçalves, S.S. Balula, Fuel Process. Technol. 131, 78–86 (2015)CrossRefGoogle Scholar
- 28.O. Kholdeeva, M. Vanina, M. Timofeeva, R. Maksimovskaya, T. Trubitsina, M. Melgunov, E. Burgina, J. Mrowiec-Bialon, A. Jarzebski, C. Hill, J. Catal. 226, 363–371 (2004)CrossRefGoogle Scholar
- 29.J. Beck, J. Vartuli, W.J. Roth, M. Leonowicz, C. Kresge, K. Schmitt, C. Chu, D.H. Olson, E. Sheppard, S. McCullen, J. Am. Chem. Soc. 114, 10834–10843 (1992)CrossRefGoogle Scholar
- 30.A. Derylo-Marczewska, W. Gac, N. Popivnyak, G. Zukocinski, S. Pasieczna, Catal. Today 114, 293–306 (2006)CrossRefGoogle Scholar
- 31.Z. Nadealian, V. Mirkhani, B. Yadollahi, M. Moghadam, S. Tangestaninejad, I. Mohammadpoor-Baltork, J. Coord. Chem. 66, 1264–1275 (2013)CrossRefGoogle Scholar
- 32.D.J. Heldebrant, P.K. Koech, M.T.C. Ang, C. Liang, J.E. Rainbolt, C.R. Yonker, P.G. Jessop, Green Chem. 12, 713–721 (2010)CrossRefGoogle Scholar
- 33.J.A. Gamelas, A.M. Cavaleiro, E. de Matos Gomes, M. Belsley, E. Herdtweck, Polyhedron 21, 2537–2545 (2002)CrossRefGoogle Scholar
- 34.C. Kresge, M. Leonowicz, W. Roth, J. Vartuli, J. Beck, Nature 359, 710–712 (1992)CrossRefGoogle Scholar
- 35.A. Patel, S. Singh, Microporous Mesoporous Mater. 195, 240–249 (2014)CrossRefGoogle Scholar
- 36.T. Mallat, A. Baiker, Chem. Rev. 104, 3037–3058 (2004)CrossRefGoogle Scholar