Advertisement

Citric acid stabilized on the surface of magnetic nanoparticles as an efficient and recyclable catalyst for transamidation of carboxamides, phthalimide, urea and thiourea with amines under neat conditions

  • Marzban Arefi
  • Maryam Kazemi Miraki
  • Ramin Mostafalu
  • Mohammad Satari
  • Akbar Heydari
Original Paper
  • 11 Downloads

Abstract

Citric acid-coated magnetic nanoparticles (Fe3O4–CA NPs) were successfully prepared and characterized. This magnetic nanocatalyst was employed as an efficient, recyclable, and environmentally benign heterogeneous catalyst for the transamidation of carboxamides, phthalimide, urea and thiourea with amines. Several derivatives of formylated and transamidated products were synthesized in good to excellent yields in the presence of this catalytic system. And, the catalyst could be easily separated from the reaction mixture using an external magnet and can be reused six times without any significant loss in its catalytic activity.

Graphical abstract

Keywords

Amides Transamidation Magnetic nanoparticles Citric acid Heterogeneous catalysis 

Notes

Acknowledgements

We acknowledge Tarbiat Modares University for partial support of this work. The authors express their gratitude to Dr. Dariush Saberi for revising the English language of the manuscript.

Supplementary material

13738_2018_1523_MOESM1_ESM.pdf (3.8 mb)
Supplementary material 1 (PDF 3926 KB)

References

  1. 1.
    W. Wrasidlo, J. Augl, Aromatic polyimide-co-amides. I. J. Polym. Sci. Part A 1 Polym Chem. 7, 321–332 (1969)CrossRefGoogle Scholar
  2. 2.
    J. Szadowski, Z. Niewiadomski, Direct dyes containing cyclic amide groups. Dyes Pigm. 21, 123–133 (1993)CrossRefGoogle Scholar
  3. 3.
    J.M. Humphrey, A.R. Chamberlin, Chemical synthesis of natural product peptides: coupling methods for the incorporation of noncoded amino acids into peptides. Chem. Rev. 97, 2243–2266 (1997)CrossRefGoogle Scholar
  4. 4.
    A. Greenberg, C.M. Breneman, J.F. Liebman, The amide linkage: structural significance in chemistry, biochemistry, and materials science (Wiley, New York, 2000)Google Scholar
  5. 5.
    J.W. Bode, Emerging methods in amide-and peptide-bond formation. Curr. Opin. Drug Disc. Dev. 9, 765–775 (2006)Google Scholar
  6. 6.
    T. Cupido, J. Tulla-Puche, J. Spengler, F. Albericio, The synthesis of naturally occurring peptides and their analogs. Curr. Opin. Drug Disc. Dev. 10, 768–783 (2007)Google Scholar
  7. 7.
    W.L. Craig, Molecule of the Month. Curr. Top. Med. Chem. 8, 434–434 (2008)CrossRefGoogle Scholar
  8. 8.
    R.C. Larock, Comprehensive organic transformations: a guide to functional group preparations (Wiley, New York, 1999)Google Scholar
  9. 9.
    S.-Y. Han, Y.-A. Kim, Recent development of peptide coupling reagents in organic synthesis. Tetrahedron 60, 2447–2467 (2004)CrossRefGoogle Scholar
  10. 10.
    C.A. Montalbetti, V. Falque, Amide bond formation and peptide coupling. Tetrahedron 61, 10827–10852 (2005)CrossRefGoogle Scholar
  11. 11.
    E. Valeur, M. Bradley, Amide bond formation: beyond the myth of coupling reagents. Chem. Soc. Rev. 38, 606–631 (2009)CrossRefGoogle Scholar
  12. 12.
    K. Ekoue-Kovi, C. Wolf, One-pot oxidative esterification and amidation of aldehydes. Chem. Eur. J. 14, 6302–6315 (2008)CrossRefGoogle Scholar
  13. 13.
    C. Chen, S.H. Hong, Oxidative amide synthesis directly from alcohols with amines. Org. Biomol. Chem. 9, 20–26 (2011)CrossRefGoogle Scholar
  14. 14.
    V.R. Pattabiraman, J.W. Bode, Rethinking amide bond synthesis. Nature 480, 471–479 (2011)CrossRefGoogle Scholar
  15. 15.
    C.L. Allen, J.M. Williams, Metal-catalysed approaches to amide bond formation. Chem. Soc. Rev. 40, 3405–3415 (2011)CrossRefGoogle Scholar
  16. 16.
    S. Roy, S. Roy, G.W. Gribble, Metal-catalyzed amidation. Tetrahedron, 68, 9867–9923 (2012)CrossRefGoogle Scholar
  17. 17.
    R.M. de Figueiredo, J.-S. Suppo, J.-M. Campagne, Nonclassical routes for amide bond formation. Chem. Rev. 116, 12029–12122 (2016)CrossRefGoogle Scholar
  18. 18.
    J.A. Mitchell, E.E. Reid, The preparation of aliphatic amides. J. Am. Chem. Soc. 53, 1879–1883 (1931)CrossRefGoogle Scholar
  19. 19.
    B.S. Jursic, Z. Zdravkovski, A simple preparation of amides from acids and amines by heating of their mixture. Synth. Commun. 23, 2761–2770 (1993)CrossRefGoogle Scholar
  20. 20.
    L.J. Gooßen, D.M. Ohlmann, P.P. Lange, The thermal amidation of carboxylic acids revisited. Synthesis, 2009, 160–164 (2009)CrossRefGoogle Scholar
  21. 21.
    P.G. Swann, R.A. Casanova, A. Desai, M.M. Frauenhoff, M. Urbancic, U. Slomczynska, A.J. Hopfinger, G.C. Le Breton, D.L. Venton, Nonspecific protease-catalyzed hydrolysis/synthesis of a mixture of peptides: product diversity and ligand amplification by a molecular trap. Pept. Sci. 40, 617–625 (1996)CrossRefGoogle Scholar
  22. 22.
    M.V. Sergeeva, V.V. Mozhaev, J.O. Rich, Y.L. Khmelnitsky, Lipase-catalyzed transamidation of non-activated amides in organic solvent. Biotechnol. Lett. 22, 1419–1422 (2000)CrossRefGoogle Scholar
  23. 23.
    T.A. Dineen, M.A. Zajac, A.G. Myers, Efficient transamidation of primary carboxamides by in situ activation with N, N-dialkylformamide dimethyl acetals. J. Am. Chem. Soc. 128, 16406–16409 (2006)CrossRefGoogle Scholar
  24. 24.
    S.E. Eldred, D.A. Stone, S.H. Gellman, S.S. Stahl, Catalytic transamidation under moderate conditions. J. Am. Chem. Soc. 125, 3422–3423 (2003)CrossRefGoogle Scholar
  25. 25.
    M. Zhang, S. Imm, S. Bähn, L. Neubert, H. Neumann, M. Beller, Efficient copper(II)-catalyzed transamidation of non-activated primary carboxamides and ureas with amines. Angew. Chem. Int. Ed. 51, 3905–3909 (2012)CrossRefGoogle Scholar
  26. 26.
    D.-W. Gu, X.-X. Guo, Synthesis of N-arylcarboxamides by the efficient transamidation of DMF and derivatives with anilines. Tetrahedron 71, 9117–9122 (2015)CrossRefGoogle Scholar
  27. 27.
    M. Nirmala, G. Prakash, P. Viswanathamurthi, J.G. Malecki, An attractive route to transamidation catalysis: facile synthesis of new o-aryloxide-N-heterocyclic carbene ruthenium(II) complexes containing trans triphenylphosphine donors. J. Mol. Catal. A Chem. 403, 15–26 (2015)CrossRefGoogle Scholar
  28. 28.
    R. Vanjari, B.K. Allam, K.N. Singh, Hypervalent iodine catalyzed transamidation of carboxamides with amines. RSC Adv. 3, 1691–1694 (2013)CrossRefGoogle Scholar
  29. 29.
    M.A. Ali, S.H. Siddiki, K. Kon, K.-i. Shimizu, Fe3+-exchanged clay catalyzed transamidation of amides with amines under solvent-free condition. Tetrahedron Lett. 55, 1316–1319 (2014)CrossRefGoogle Scholar
  30. 30.
    S.C. Ghosh, C.C. Li, H.C. Zeng, J.S. Ngiam, A.M. Seayad, A. Chen, Mesoporous niobium oxide spheres as an effective catalyst for the transamidation of primary amides with amines. Adv. Synth. Catal. 356, 475–484 (2014)CrossRefGoogle Scholar
  31. 31.
    M. Tamura, T. Tonomura, K. Shimizu, A. Satsuma, Transamidation of amides with amines under solvent-free conditions using a CeO2 catalyst. Green Chem. 14, 717–724 (2012)CrossRefGoogle Scholar
  32. 32.
    S.P. Pathare, A.K.H. Jain, K.G. Akamanchi, Sulfated tungstate: a highly efficient catalyst for transamidation of carboxamides with amines. RSC Adv. 3, 7697–7703 (2013)CrossRefGoogle Scholar
  33. 33.
    R.M. Lanigan, P. Starkov, T.D. Sheppard, Direct synthesis of amides from carboxylic acids and amines using B(OCH2CF3)3. J. Org. Chem. 78, 4512–4523 (2013)CrossRefGoogle Scholar
  34. 34.
    P. Starkov, T.D. Sheppard, Borate esters as convenient reagents for direct amidation of carboxylic acids and transamidation of primary amides. Org. Biomol. Chem. 9, 1320–1323 (2011)CrossRefGoogle Scholar
  35. 35.
    S.N. Rao, D.C. Mohan, S. Adimurthy, L-proline: an efficient catalyst for transamidation of carboxamides with amines. Org. Lett. 15, 1496–1499 (2013)CrossRefGoogle Scholar
  36. 36.
    S.N. Rao, D.C. Mohan, S. Adimurthy, Chitosan: an efficient recyclable catalyst for transamidation of carboxamides with amines under neat conditions. Green Chem. 16, 4122–4126 (2014)CrossRefGoogle Scholar
  37. 37.
    P.N. Muskawar, K. Thenmozhi, P.R. Bhagat, Designing of thermally stable amide functionalized benzimidazolium perchlorate ionic liquid for transamidation of primary carboxamides. Appl. Catal., A 493, 158–167 (2015)CrossRefGoogle Scholar
  38. 38.
    J.W. Wu, Y.D. Wu, J.J. Dai, H.J. Xu, Benzoic acid-catalyzed transamidation reactions of carboxamides, phthalimide, ureas and thioamide with amines. Adv. Synth. Catal. 356, 2429–2436 (2014)CrossRefGoogle Scholar
  39. 39.
    M.B. Gawande, P.S. Branco, R.S. Varma, Nano-magnetite (Fe3O4) as a support for recyclable catalysts in the development of sustainable methodologies. Chem. Soc. Rev. 42, 3371–3393 (2013)CrossRefGoogle Scholar
  40. 40.
    J. Safaei-Ghomi, S. Zahedi, Diastereoselective synthesis of isoxazolidines and spiroisoxazolidines via catalytic 1, 3-dipolar cycloaddition reactions in the presence of Fe3O4-l-proline nanoparticles as a magnetic organocatalyst. Tetrahedron Lett. 57, 1071–1073 (2016)CrossRefGoogle Scholar
  41. 41.
    F. Alemi Tameh, J. Safaei-Ghomi, Synthesis of spiro [pyrazoloquinoline-oxindoles] and spiro [chromenopyrazolo-oxindoles] promoted by guanidine-functionalized magnetic Fe3O4 nanoparticles. J. Iran. Chem. Soc. 15, 1633–1637 (2018)CrossRefGoogle Scholar
  42. 42.
    J. Safaei-Ghomi, F. Eshteghal, Nano-Fe3O4/PEG/succinic anhydride: a novel and efficient catalyst for the synthesis of benzoxanthenes under ultrasonic irradiation. Ultrason. Sonochem. 38, 488–495 (2017)CrossRefGoogle Scholar
  43. 43.
    J.S. Ghomi, S. Zahedi, Novel ionic liquid supported on Fe3O4 nanoparticles and its application as a catalyst in Mannich reaction under ultrasonic irradiation. Ultrason. Sonochem. 34, 916–923 (2017)CrossRefGoogle Scholar
  44. 44.
    M. Arefi, A. Heydari, Transamidation of primary carboxamides, phthalimide, urea and thiourea with amines using Fe (OH)3@Fe3O4 magnetic nanoparticles as an efficient recyclable catalyst. RSC Adv. 6, 24684–24689 (2016)CrossRefGoogle Scholar
  45. 45.
    M. Arefi, D. Saberi, M. Karimi, A. Heydari, Superparamagnetic Fe(OH)3@Fe3O4 nanoparticles: an efficient and recoverable catalyst for tandem oxidative amidation of alcohols with amine hydrochloride salts. ACS Comb. Sci. 17, 341–347 (2015)CrossRefGoogle Scholar
  46. 46.
    D. Saberi, A. Heydari, Oxidative amidation of aromatic aldehydes with amine hydrochloride salts catalyzed by silica-coated magnetic carbon nanotubes (MagCNTs@SiO2)-immobilized imine-Cu(I). Appl. Organomet. Chem. 28, 101–108 (2014)CrossRefGoogle Scholar
  47. 47.
    M. Kazemi Miraki, M. Arefi, E. Yazdani, S. Abbasi, M. Karimi, K. Azizi, A. Heydari, Guanidine acetic acid functionalized magnetic nanoparticles: recoverable green catalyst for transamidation. Chem. Sel. 1, 6328–6333 (2016)Google Scholar
  48. 48.
    D. Singh, R.K. Gautam, R. Kumar, B.K. Shukla, V. Shankar, V. Krishna, Citric acid coated magnetic nanoparticles: synthesis, characterization and application in removal of Cd(II) ions from aqueous solution. J. Water Process Eng. 4, 233–241 (2014)CrossRefGoogle Scholar
  49. 49.
    S. Nigam, K. Barick, D. Bahadur, Development of citrate-stabilized Fe3O4 nanoparticles: conjugation and release of doxorubicin for therapeutic applications. J. Magn. Magn. Mater. 323, 237–243 (2011)CrossRefGoogle Scholar
  50. 50.
    E. Cheraghipour, S. Javadpour, A.R. Mehdizadeh, Citrate capped superparamagnetic iron oxide nanoparticles used for hyperthermia therapy. J. Biomed. Sci. Eng. 5, 715 (2012)CrossRefGoogle Scholar
  51. 51.
    S. Çalimsiz, M.A. Lipton, Synthesis of N-Fmoc-(2S,3S,4R)-3,4-dimethylglutamine: an application of lanthanide-catalyzed transamidation. J. Org. Chem. 70, 6218–6221 (2005)CrossRefGoogle Scholar
  52. 52.
    J.M. Hoerter, K.M. Otte, S.H. Gellman, S.S. Stahl, Mechanism of AlIII-catalyzed transamidation of unactivated secondary carboxamides. J. Am. Chem. Soc. 128, 5177–5183 (2006)CrossRefGoogle Scholar
  53. 53.
    N.A. Stephenson, J. Zhu, S.H. Gellman, S.S. Stahl, Catalytic transamidation reactions compatible with tertiary amide metathesis under ambient conditions. J. Am. Chem. Soc. 131, 10003–10008 (2009)CrossRefGoogle Scholar
  54. 54.
    T. Marcelli, Mechanistic insights into direct amide bond formation catalyzed by boronic acids: halogens as Lewis bases. Angew. Chem. Int. Ed. 49, 6840–6843 (2010)CrossRefGoogle Scholar
  55. 55.
    T.B. Nguyen, J. Sorres, M.Q. Tran, L. Ermolenko, A. Al-Mourabit, Boric acid: a highly efficient catalyst for transamidation of carboxamides with amines. Org. Lett. 14, 3202–3205 (2012)CrossRefGoogle Scholar
  56. 56.
    E. Ghonchepour, E. Yazdani, D. Saberi, M. Arefi, A. Heydari, Preparation and characterization of copper chloride supported on citric acid-modified magnetite nanoparticles (Cu2+-CA@Fe3O4) and evaluation of its catalytic activity in the reduction of nitroarene compounds. Appl. Organomet. Chem. 31, e3822 (2017)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2018

Authors and Affiliations

  1. 1.Chemistry DepartmentTarbiat Modares UniversityTehranIran

Personalised recommendations