Advertisement

Journal of the Iranian Chemical Society

, Volume 16, Issue 1, pp 143–149 | Cite as

Colorimetric determination of iodine based on highly selective and sensitive anti-aggregation assay

  • Ali Pournaghi
  • Foroogh Keshvari
  • Morteza BahramEmail author
Original Paper
  • 46 Downloads

Abstract

Iodine as a mineral has great effects on public health; accordingly, there has been an urgent request for iodine selective and sensitive sensor. A colorimetric assay based on the anti-aggregation exclusive feature of gold nanoparticles is presented in this study. The proffered sensor was manufactured in regard to the interaction between thiosulfate and gold nanoparticles, and the forceful inactivation of thiosulfate by iodine. Different concentrations of iodine lead to differential inactivation of thiosulfate, which is in charge of obvious color alteration of AuNPs from blue to red. The quantification of iodine is acquired in relation to the alteration in the surface plasmon resonance absorption of the gold nanoparticles. Under the optimum condition, the limit of detection is 1.36 nmol L−1 with the linear range from 3 to 80 nmol L−1. Further utilization of the proposed colorimetric method to determine iodine in human serum presented satisfying consequence concerning selectivity and sensitivity.

Keywords

Colorimetric sensor Anti-aggregation Iodine Gold nanoparticles 

References

  1. 1.
    F.R. Stoddard, I.I.,A.D. Brooks, B.A. Eskin, G.J. Johannes, Int. J. Med. Sci. 5, 189 (2008)CrossRefGoogle Scholar
  2. 2.
    S. Venturi, C.E. Grotkowski, C.P. Connolly, W.R. Ghent, Breast. 10, 379 (2001)CrossRefGoogle Scholar
  3. 3.
    V.R. Preedy, G.N. Burrow, R. Watson, Comprehensive Handbook of Iodine, 1st edn. (Elsevier, Amsterdam, 2009), pp. 215–220Google Scholar
  4. 4.
    C.C. Abnet, J.H. Fan, F. Kamangar, X.D. Sun, P.R. Taylor, J.S. Ren, S.D. Mark, P. Zhao, J.F. Fraumeni Jr, Y.L. Qiao, S.M. Dawsey, Int. J. Cancer 119, 1508 (2006)CrossRefGoogle Scholar
  5. 5.
    R. Behrouzian, N. Aghdami, Health J. 10, 921 (2004)Google Scholar
  6. 6.
    M.B. Zimmermann, P.L. Jooste, C.S. Pandav, Lancet 372, 1251 (2008)CrossRefGoogle Scholar
  7. 7.
    R.H. Verheesen, C.M. Schweitzer, Med. Hypotheses 71, 645 (2008)CrossRefGoogle Scholar
  8. 8.
    World Health Organization (WHO), United Nations Children’s Fund, and the International Council for the Control of Iodine Deficiency Disorders (ICCIDD). Assessment of Iodine Deficiency Disorders and Monitoring their Elimination: A Guide for Programme Managers. 3rd edn. (World Health Organization, Geneva, 2007) (ISBN: 9789241595827) Google Scholar
  9. 9.
    C.C. Johnson, The geochemistry of iodine and its application to environmental strategies for reducing the risks from iodine deficiency disorders. British Geological Survey, commissioned report, CR/03/057N, Keyworth, Nottingham (2003)Google Scholar
  10. 10.
    U. Kapil, Sultan Qaboos Univ. Med. J. 7, 267 (2007)Google Scholar
  11. 11.
    T. Hirokawa, M. Yoshioka, H. Okamoto, A.R. Timerbaev, G. Blaschke, J. Chromatogr. B 811, 165 (2004)CrossRefGoogle Scholar
  12. 12.
    U. Nitschke, D.B. Stenge, Food Chem. 172, 326 (2015)CrossRefGoogle Scholar
  13. 13.
    H.J. Reid, A.A. Bashammakh, P.S. Goodall, M.R. Landon, M.R.C. O’Connor, B.L. Sharp, Talanta 75, 189 (2008)Google Scholar
  14. 14.
    V.C. Costa, R.S. Picoloto, C.A. Hartwig, P.A. Mello, E.M. Flores, M.F. Mesko, Anal. Bioanal. Chem. 407, 7957 (2015)CrossRefGoogle Scholar
  15. 15.
    A. Błażewicz, M. Klatka, W. Dolliver, R. Kocjan, J. Chromatogr. B 962, 141 (2014)CrossRefGoogle Scholar
  16. 16.
    M. Tubino, J.A. Aricetti, Fuel 103, 1158 (2013)CrossRefGoogle Scholar
  17. 17.
    J.V. Dyke, P.K. Dasgupta, A.B. Kirk, Talanta 79, 235 (2009)CrossRefGoogle Scholar
  18. 18.
    M.D. Huang, H. Becker-Ross, S. Florek, M. Okruss, B. Welz, S. Morés, Spectrochim. Acta B 64, 697 (2009)CrossRefGoogle Scholar
  19. 19.
    K. Saha, S.S. Agasti, C. Kim, X. Li, V.M. Rotello, Chem. Rev. 112, 2739 (2012)CrossRefGoogle Scholar
  20. 20.
    M. Zayats, R. Baron, I. Popov, I. Willner, Nano Lett. 5, 21 (2005)CrossRefGoogle Scholar
  21. 21.
    M.-C. Daniel, D. Astruc, Chem. Rev. 104, 293 (2004)CrossRefGoogle Scholar
  22. 22.
    L. Yu, A. Andriola, A review. Talanta 82, 869 (2010)CrossRefGoogle Scholar
  23. 23.
    F. Keshvari, M. Bahram, Kh Farhadi, J. Iran. Chem. Soc. 13, 1411 (2016)CrossRefGoogle Scholar
  24. 24.
    M. Jafari, J. Tashkhourian, G. Absalan, J. Iran. Chem. Soc. 14, 1253 (2017)CrossRefGoogle Scholar
  25. 25.
    M. Mazloum-Ardakani, Z. Dehghani, A. Khoshroo, J. Iran. Chem. Soc. (2018).  https://doi.org/10.1007/s13738-018-1303-5 Google Scholar
  26. 26.
    S. Dorostkar, B. Hemmateenejad, J. Iran. Chem. Soc. 10, 513 (2013)CrossRefGoogle Scholar
  27. 27.
    M.R. Hormozi-Nezhad, S. Abbasi-Moayed, Talanta 129, 227 (2014)CrossRefGoogle Scholar
  28. 28.
    Y. Li, P. Wu, H. Xu, Z. Zhang, X. Zhong, Talanta 84, 508 (2011)CrossRefGoogle Scholar
  29. 29.
    Y.L. Li, Y.M. Leng, Y.J. Zhang, T.H. Li, Z.Y. Shen, A.G. Wu, Sens. Actuator B Chem 200, 140 (2014)CrossRefGoogle Scholar
  30. 30.
    F. Keshvari, M. Bahram, Kh Farhadi, Chin. Chem. Lett. 27, 847 (2016)CrossRefGoogle Scholar
  31. 31.
    G. Frens, Nature Phys. Sci. 241, 20 (1973)CrossRefGoogle Scholar
  32. 32.
    G. Senanayake, Hydrometallurgy 77, 287 (2005)CrossRefGoogle Scholar
  33. 33.
    T. Zh. Kormosh, Savchuk, Mater. Sci. Eng. C 32, 2286 (2012)CrossRefGoogle Scholar
  34. 34.
    M.C. Yebra, M.H. Bollain, Talanta 82, 828 (2010)CrossRefGoogle Scholar
  35. 35.
    S.D. Nikolic, J.J. Mutic, A.D. Lolic, D.D. Manojlovic, Anal. Sci. 21, 525 (2005)CrossRefGoogle Scholar
  36. 36.
    G. Landon, C. Bouvier-Capely, A. Legrand et al., Am. J. Anal. Chem. 8, 245 (2017)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2018

Authors and Affiliations

  • Ali Pournaghi
    • 1
  • Foroogh Keshvari
    • 1
  • Morteza Bahram
    • 1
    Email author
  1. 1.Department of Analytical Chemistry, Faculty of ChemistryUrmia UniversityUrmiaIran

Personalised recommendations