Advertisement

Journal of the Iranian Chemical Society

, Volume 16, Issue 1, pp 127–136 | Cite as

BF3·OEt2 catalyzed base-free regiospecific ring opening of N-activated azetidines with (E)-1-arylidene-2-arylhydrazines

  • Ranadeep Talukdar
Original Paper
  • 29 Downloads

Abstract

Making a C–N bond is always an interesting challenge for organic chemists. Azetidines are important nitrogen containing building blocks for synthesis of larger molecules. The first report of regiospecific addition of hydrazones to the benzylic position of aryl azetidines to afford high yields of important hydrazonyl amine derivatives is described herein. A new C–N bond forms in this reaction scheme. The reactions proceed at stellar rates in presence of only 5 mol% of BF3·OEt2 Lewis acid without the need of any base. The reaction requires easy-to-synthesize reagents and very mild condition. This report is a useful method to synthesize the building blocks of biologically active natural products containing one or more N–N bond(s).

Graphical Abstract

A base-free regiospecific ring opening of azetidines with various hydrazones is described to synthesize various hydrazonyl amines in a very short span of time. This report describes an aniline N-functionalization of hydrazines with a smooth C–N bond-forming reaction.

Keywords

Base-free C–N bond formation Azetidine Hydrazone Nucleophilic regiospecific ring opening BF3·OEt2 Lewis acid catalysis 

Supplementary material

13738_2018_1489_MOESM1_ESM.doc (5 mb)
Supplementary material 1 (DOC 5169 KB)

References

  1. 1.
    J.A. Joule, Heterocyclic chemistry in the 21st century: a tribute to Alan Katritzky, in Advances in Heterocyclic Chemistry, ed. By F.V. Scriven, E,C.A. Ramsden, vol. 119 (Elsevier, 2016), pp. 81–106Google Scholar
  2. 2.
    J.D. Senra, L.C.S. Aguiara, A.B.C. Simas, Curr. Org. Synth. 8, 53 (2011)CrossRefGoogle Scholar
  3. 3.
    J. Bariwala, E. Van der Eycken, Chem. Soc. Rev. 42, 9283 (2013)CrossRefGoogle Scholar
  4. 4.
    C.-L. Sun, Z.-J. Shi, Chem. Rev. 114, 9219 (2014)CrossRefGoogle Scholar
  5. 5.
    J. Liu, H. Zhang, H. Yi, C. Liu, A. Lei, Sci. China. Chem. 58, 1323 (2015)CrossRefGoogle Scholar
  6. 6.
    Q. Jiang, B. Xu, A. Zhao, J. Jia, T. Liu, C. Guo, J. Org. Chem. 79, 8750 (2014)CrossRefGoogle Scholar
  7. 7.
    G.W. Gribble, J.A. Joule, Progress in heterocyclic chemistry, vol. 16 (Elsevier, Oxford, UK, 2004), p. 475Google Scholar
  8. 8.
    N. De Kimpe, Comprehensive heterocyclic chemistry II, ed. by A. By, Padwa, vol. 1, Chap. 1.21 (Elsevier: Oxford, UK, 1996)Google Scholar
  9. 9.
    D.E. Davies, R.C. Storr, in Comprehensive Heterocyclic Chemistry, vol. 7, ed. by B.W. Lwowski, part 5 (Pergamon, Oxford, UK, 1984), pp. 237–284CrossRefGoogle Scholar
  10. 10.
    J.A. Moore, R.S. Ayers, Chemistry of Heterocyclic compounds small ring heterocycles, ed. By A. Hassner, part 2 (Wiley, New York, 1983), pp. 1–217Google Scholar
  11. 11.
    V.K. Yadav, V. Sriramurthy, J. Am. Chem. Soc. 127, 16366 (2005)CrossRefGoogle Scholar
  12. 12.
    I. Ungureanu, P. Klotz, A. Schoenfelder, A. Mann, Chem. Commun. 958 (2001)Google Scholar
  13. 13.
    B. Drouillat, I.V. Dorogan, M. Kletskii, O.N. Burov, F. Couty, J. Org. Chem. 81, 6677 (2016)CrossRefGoogle Scholar
  14. 14.
    J. Lugiņina, J. Uzuleņa, D. Posevins, M. Turks, Eur. J. Org. Chem. 1760 (2016)Google Scholar
  15. 15.
    P. Quinodoz, K. Wright, B. Drouillat, O. David, J. Marrot, F. Couty, Chem. Commun. 52, 10072 (2016)CrossRefGoogle Scholar
  16. 16.
    M. Bera, S. Roy, J. Org. Chem. 74, 8814 (2009)CrossRefGoogle Scholar
  17. 17.
    S.K. Dwivedi, S. Gandhi, N. Rastogi, V.K. Singh, Tetrahedron Lett. 48, 5375 (2007)CrossRefGoogle Scholar
  18. 18.
    F. Couty, O. David, F. Durrat, Tetrahedron Lett. 48, 1027 (2007)CrossRefGoogle Scholar
  19. 19.
    W. Van Brabandt, R. Van Landeghem, N. De Kimpe, Org. Lett. 8, 1105 (2006)CrossRefGoogle Scholar
  20. 20.
    F. Couty, F. Durrat, G. Evano, J. Marrot, J. Eur. J. Org. Chem. 18, 4214 (2006)CrossRefGoogle Scholar
  21. 21.
    M. Domostoj, I. Ungureanu, A. Schoenfelder, P. Klotz, A. Mann, Tetrahedron Lett. 47, 2205 (2006)CrossRefGoogle Scholar
  22. 22.
    M. Vargas-Sanchez, S. Lakhdar, F. Couty, G. Evano, Org. Lett. 8, 5501 (2006)CrossRefGoogle Scholar
  23. 23.
    M. Vargas-Sanchez, F. Couty, G. Evano, D. Prim, J. Marrot, Org. Lett. 7, 5861 (2005)CrossRefGoogle Scholar
  24. 24.
    J.A. Vanecko, F.G. West, Org. Lett. 7, 2949 (2005)CrossRefGoogle Scholar
  25. 25.
    B.A.B. Prasad, A. Bisai, V.K. Singh, Org. Lett. 6, 4829 (2004)CrossRefGoogle Scholar
  26. 26.
    T. Akiyama, K. Daidouji, K. Fuchibe, Org. Lett. 5, 3691 (2003)CrossRefGoogle Scholar
  27. 27.
    M.K. Ghorai, D. Shukla, A. Bhattacharyya, J. Org. Chem. 77, 3740 (2012)CrossRefGoogle Scholar
  28. 28.
    M.K. Ghorai, A. Kumar, D.P. Tiwari, J. Org. Chem. 75, 137 (2010)CrossRefGoogle Scholar
  29. 29.
    M.K. Ghorai, K. Das, A. Kumar, Tetrahedron Lett. 50, 1105 (2009)CrossRefGoogle Scholar
  30. 30.
    M.K. Ghorai, D. Shukla, K. Das, J. Org. Chem. 74, 7013 (2009)CrossRefGoogle Scholar
  31. 31.
    M.K. Ghorai, K. Das, A. Kumar, Tetrahedron Lett. 48, 4373 (2007)CrossRefGoogle Scholar
  32. 32.
    M.K. Ghorai, A. Kumar, K. Das, Org. Lett. 9, 5441 (2007)CrossRefGoogle Scholar
  33. 33.
    M.K. Ghorai, K. Das, D. Shukla, J. Org. Chem. 72, 5859 (2007)CrossRefGoogle Scholar
  34. 34.
    L.M. Blair, J. Sperry, J. Nat. Prod. 76, 794 (2013)CrossRefGoogle Scholar
  35. 35.
    D. Hong, X. Lin, Y. Zhu, M. Lei, Y. Wang, Org. Lett. 11, 5678 (2009)CrossRefGoogle Scholar
  36. 36.
    Z. Yuan, L. Mei, Y. Wei, M. Shi, P.V. Kattamuri, P. McDowell, G. Li, Org. Biomol. Chem. 10, 2509 (2012)CrossRefGoogle Scholar
  37. 37.
    B. Martine, C. Sylvie, M. Christian, S. Luc, Eur Patent 3156404, 2017Google Scholar
  38. 38.
    M. Penny, G. Kyle, US Patent 038305, 2016Google Scholar
  39. 39.
    G. Kyle, C. Aimei, H.C. Kang, US Patent 107323, 2014Google Scholar
  40. 40.
    H.C. Kang, US Patent 0203564, 2010Google Scholar
  41. 41.
    M.F. Hamza, Y.K. Abdel-Monem, N.M. Farag, A.M. El-Tanbouly, IJSBAR 30, 149 (2016)Google Scholar
  42. 42.
    M.F. Hamza, Desalin. Water Treat. 54, 2530 (2015)CrossRefGoogle Scholar
  43. 43.
    M.F. Hamza, M.G. Mahfouz, A.A.-H. Abdel-Rahman, J. Dispers. Sci. Technol. 33, 1544 (2012)CrossRefGoogle Scholar
  44. 44.
    R. Djogić, Limnol. Oceanogr. 31, 1122 (1986)CrossRefGoogle Scholar
  45. 45.
    D.D. Perrin, W.L.F. Armarego, Purification of laboratory chemicals, Third edn. (Pergamon Press, Oxford, 1988)Google Scholar
  46. 46.
    B.S. Furniss, A.J. Hannaford, P.W.G. Smith, A.R. Tatchell, Vogel’s textbook of practical organic chemistry, Fifth edn (Longman Group, U.K. Ltd., 1989)Google Scholar
  47. 47.
    C.L. Jenkins, J.K. Kochi, J. Am. Chem. Soc. 94, 843 (1972)CrossRefGoogle Scholar
  48. 48.
    M.K. Ghorai, K. Das, A. Kumar, Tetrahedron Lett. 48, 2471 (2007)CrossRefGoogle Scholar
  49. 49.
    G. Vantomme, S. Jiang, J.M. Lehn, J. Am. Chem. Soc. 136, 9509 (2014)CrossRefGoogle Scholar
  50. 50.
    SAINT+, 6.02 edition, Bruker AXS (Madison, WI, 1999)Google Scholar
  51. 51.
    G.M. Sheldrick, SADABS, empirical absorption correction program (University of Göttingen, Germany, 1997)Google Scholar
  52. 52.
    XPREP, 5.1 edition, Siemens Industrial Automation Inc., (Madison, WI, 1995)Google Scholar
  53. 53.
    G.M. Sheldrick, SHELXL-97, Program for the Refinement of Crystal Structures (University of Göttingen, Göttingen, Germany, 1997)Google Scholar

Copyright information

© Iranian Chemical Society 2018

Authors and Affiliations

  1. 1.Department of ChemistryIndian Institute of TechnologyKharagpurIndia

Personalised recommendations