Advertisement

Journal of the Iranian Chemical Society

, Volume 16, Issue 1, pp 111–116 | Cite as

Metal-free greener method for the synthesis of densely functionalized pyrroles via a one-pot three-component reaction

  • Maryam Fatahpour
  • Nourallah Hazeri
  • Malek Taher Maghsoodlou
  • Mojtaba Lashkari
Original Paper
  • 25 Downloads

Abstract

A convenient and straightforward acid-promoted synthesis of a new series of polyfunctionalized pyrroles has been developed based on a one-pot three-component reaction of acetoacetanilide, benzoin, and ammonium acetate/diverse anilines in acetic acid as a green solvent at 100 °C. The other salient benefits of this transformation include being simple reaction conditions, toxic transition-metal-free, no need of column chromatographic purification, moderate to good yields, eco-friendliness, and readily available starting materials.

Graphical abstract

Keywords

Acid-promoted Polyfunctionalized pyrroles One-pot Green solvent 

Notes

Acknowledgements

We gratefully appreciate the financial support from the Research Council of University of Sistan and Baluchestan.

References

  1. 1.
    V. Polshettiwar, R. Luque, A. Fihri, H. Zhu, M. Bouhrara, J.M. Basset, Chem. Rev. 111, 3036–3075 (2011)CrossRefGoogle Scholar
  2. 2.
    P.T. Anastas, J.C. Warner, Green Chemistry: Theory and Practice (Oxford University Press, New York, 1998)Google Scholar
  3. 3.
    R.A. Sheldon, Green Chem. 19, 18–43 (2017)CrossRefGoogle Scholar
  4. 4.
    E. Ruijter, R. Scheffelaar, R.V. Orru, Angew. Chem. Int. Ed. 50, 6234–6246 (2011)CrossRefGoogle Scholar
  5. 5.
    B. Ganem, Acc. Chem. Res. 42, 463–472 (2009)CrossRefGoogle Scholar
  6. 6.
    M. Shiri, Chem. Rev. 112, 3508–3549 (2012)CrossRefGoogle Scholar
  7. 7.
    P.A. Clarke, S. Santos, W.H.C. Martin, Green Chem. 9, 438–440 (2007)CrossRefGoogle Scholar
  8. 8.
    E. Fernandes, D. Costa, S.A. Toste, J.L. Lima, S. Reis, Free Radic. Biol. Med. 37, 1895–1905 (2004)CrossRefGoogle Scholar
  9. 9.
    A.V. Gulevich, A.S. Dudnik, N. Chernyak, V. Gevorgyan, Chem. Rev. 113, 3084–3213 (2013)CrossRefGoogle Scholar
  10. 10.
    J.L. Sessler, G.D. Pantos, P.A. Gale, M.E. Light, Org. Lett. 8, 1593–1596 (2006)CrossRefGoogle Scholar
  11. 11.
    V. Bhardwaj, D. Gumber, V. Abbot, S. Dhiman, P. Sharma, RSC Adv. 5, 15233–15266 (2015)CrossRefGoogle Scholar
  12. 12.
    M.S. Kim, M.H. Yoo, J.K. Rhee, Y.J. Kim, S.J. Park, J.H. Choi, S.Y. Sung, H.G. Lim, D.W. Cha, Dong-A Pharm.co., Ltd. WO2009/084827 A2 (2009)Google Scholar
  13. 13.
    P.J.W.H. Kappelle, G.M. Dallinga-Thie, R.P.F. Dullaart, Biochim. Biophys. Acta 1801, 89–94 (2010)CrossRefGoogle Scholar
  14. 14.
    H.W. Shin, C.H. Cho, T.Y. Kim, J.W. Park, Biochem. Biophys. Res. Commun. 398, 205–211 (2010)CrossRefGoogle Scholar
  15. 15.
    R.W. Bürli, D. McMinn, J.A. Kaizerman, W. Hu, Y. Ge, Q. Pack, V. Jiang, M. Gross, M. Garcia, R. Tanaka, H.E. Moser, Bioorg. Med. Chem. Lett. 14, 1253–1257 (2004)CrossRefGoogle Scholar
  16. 16.
    V.J. Demopoulos, E. Rekka, J. Pharm. Sci. 84, 79–82 (1995)CrossRefGoogle Scholar
  17. 17.
    C.C. Hughes, A. Prieto-Davo, P.R. Jensen, W. Fenical, Org. Lett. 10, 629–631 (2008)CrossRefGoogle Scholar
  18. 18.
    R. Dabur, M. Ali, H. Singh, J. Gupta, G.L. Sharma, Pharmazie 59, 568–570 (2004)Google Scholar
  19. 19.
    J. Lehuede, B. Fauconneau, L. Barrier, M. Ourakow, A. Piriou, J.M. Vierfond, Eur. J. Med. Chem. 34, 991–996 (1999)CrossRefGoogle Scholar
  20. 20.
    J.T. Gupton, Pyrrole natural products with antitumor properties, in Heterocyclic Antitumor Antibiotics. Topics in Heterocyclic Chemistry, vol 2, ed. by M. Lee (Springer, Berlin, Heidelberg, 2006), pp. 53–92CrossRefGoogle Scholar
  21. 21.
    I.K. Khanna, R.M. Weier, Y. Yu, P.W. Collins, J.M. Miyashiro, C.M. Koboldt, A.W. Veenhuizen, J.L. Currie, K. Seibert, P.C. Isakson, J. Med. Chem. 40, 1619–1633 (1997)CrossRefGoogle Scholar
  22. 22.
    C. Paal, Ber. Dtsch. Chem. Ges. 18, 367–371 (1885)CrossRefGoogle Scholar
  23. 23.
    A. Hantzsch, Ber. Dtsch. Chem. Ges. 23, 1474–1476 (1890)CrossRefGoogle Scholar
  24. 24.
    Y. Wang, X. Lei, Y. Tang, Chem. Commun. 51, 4507–4510 (2015)CrossRefGoogle Scholar
  25. 25.
    K. Li, J. You, J. Org. Chem. 81, 2327–2339 (2016)CrossRefGoogle Scholar
  26. 26.
    J. Peng, Y. Gao, C. Zhu, B. Liu, Y. Gao, M. Hu, W. Wu, H. Jiang, J. Org. Chem. 82, 3581–3588 (2017)CrossRefGoogle Scholar
  27. 27.
    M. Fatahpour, N. Hazeri, B. Adrom, M.T. Maghsoodlou, M. Lashkari, Res. Chem. Intermed. 44, 2111–2122 (2018)CrossRefGoogle Scholar
  28. 28.
    M. Fatahpour, F. Noori Sadeh, N. Hazeri, M.T. Maghsoodlou, M. Lashkari, J. Iran. Chem. Soc. 14, 1945–1956 (2017)CrossRefGoogle Scholar
  29. 29.
    M. Fatahpour, N. Hazeri, M.T. Maghsoodlou, M. Lashkari, Iran. J. Sci. Technol. Trans. A Sci. 42, 533–538 (2016)CrossRefGoogle Scholar
  30. 30.
    M. Fatahpour, N. Hazeri, M.T. Maghsoodlou, M. Lashkari, J. Chin. Chem. Soc. 64, 1071–1078 (2017)CrossRefGoogle Scholar
  31. 31.
    M.T. Maghsoodlou, M. Karima, M. Lashkari, B. Adrom, J. Aboonajmi, J. Iran. Chem. Soc. 14, 329–335 (2017)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2018

Authors and Affiliations

  • Maryam Fatahpour
    • 1
  • Nourallah Hazeri
    • 1
  • Malek Taher Maghsoodlou
    • 1
  • Mojtaba Lashkari
    • 2
  1. 1.Department of Chemistry, Faculty of ScienceUniversity of Sistan and BaluchestanZahedanIran
  2. 2.Faculty of ScienceVelayat UniversityIranshahrIran

Personalised recommendations