Journal of the Iranian Chemical Society

, Volume 16, Issue 1, pp 21–31 | Cite as

Covalent immobilization of xylanase from Thermomyces lanuginosus on aminated superparamagnetic graphene oxide nanocomposite

  • Vajihe Mehnati-Najafabadi
  • Asghar Taheri-KafraniEmail author
  • Abdol-Khalegh BordbarEmail author
  • Akram Eidi
Original Paper


Today, immobilization of enzymes has been extensively considered in a wide variety of applications in industries. Xylanase is a hemicellulotic enzyme with effective usages that has attracted the attention of researchers. In this work, xylanase from Thermomyces lanuginosus was covalently immobilized on modified graphene oxide nanosheets (NGO) via cyanuric chloride linker. The magnetic nanoparticles were perched on NGO to facilitate separation of nanocarrier from the reaction media. To decrease the steric hindrance and allow the high-molecular weight xylan as a substrate to approach the active site of the immobilized xylanase, polyethylene glycol bis-amine was used as a spacer. Various techniques such as TEM, SEM, FTIR, VSM and TGA were applied to characterize the structure of synthetic nanocomposite. The amount of immobilized xylanase was quantified by Bradford assay, and the immobilization efficiency was determined about 67%. The results showed that thermal stability, pH stability, reusability and storage stability were improved for immobilized enzyme and the kinetic parameters, \({K_m}\) and \({v_{\hbox{max} }}\) values, were increased, suggesting the great potential of the functionalized NGO as a novel nanocarrier in bio-industry applications.

Graphical abstract


Graphene oxide nanosheets Covalent immobilization Xylanase Surface modification Stability 



The financial supports of Tehran Science and Research Branch of Islamic Azad University, Research Council of the University of Isfahan and Iran National Science Foundation (Grant no. 96007105) are kindly acknowledged.


  1. 1.
    M. Kieliszek, A. Misiewicz, Folia Microbiol 59, 241 (2014)CrossRefGoogle Scholar
  2. 2.
    A.K. Mukherjee, H. Adhikari, S.K. Rai, Biochem. Eng. J. 39, 353 (2008)CrossRefGoogle Scholar
  3. 3.
    T. Acamovic, Worlds Poult. Sci. J. 57, 225 (2001)CrossRefGoogle Scholar
  4. 4.
    R.P. Vaz, L.R. de Souza Moreira, E.X. Ferreira Filho, J. Mol. Catal. B Enzym. 133, 127 (2016)CrossRefGoogle Scholar
  5. 5.
    S. Li, X. Yang, S. Yang, M. Zhu, X. Wang, Comput. Struct. Biotechnol. J. 2, 1 (2012)Google Scholar
  6. 6.
    Q. Beg, M. Kapoor, L. Mahajan, G. Hoondal, Appl. Microbiol. Biotechnol. 56, 326 (2001)CrossRefGoogle Scholar
  7. 7.
    S. Singh, A.M. Madlala, B.A. Prior, FEMS Microbiol. Lett. 27, 3 (2003)CrossRefGoogle Scholar
  8. 8.
    E. Sjostrom, Wood chemistry: fundamentals and applications (Elsevier, New York, 2013)Google Scholar
  9. 9.
    S. Datta, L.R. Christena, Y.R.S. Rajaram, Biotechnology 3, 1 (2013)Google Scholar
  10. 10.
    A.A. Homaei, R. Sariri, F. Vianello, R. Stevanato, J. Biol. Chem. 6, 185 (2013)CrossRefGoogle Scholar
  11. 11.
    A. Jakubiak, I.A. Owsik, B.N. Kolarz, React. Funct. Polym. 65, 161 (2005)CrossRefGoogle Scholar
  12. 12.
    Y. Poojari, J.S. Beemat, S.J. Clarson, Polym. Bull. 70, 1543 (2013)CrossRefGoogle Scholar
  13. 13.
    R.-S. Juang, F.-C. Wu, R.-L. Tseng, Bioresour. Technol. 80, 187 (2001)CrossRefGoogle Scholar
  14. 14.
    B. Krajewska, Enzyme Microb. Technol. 35, 126 (2004)CrossRefGoogle Scholar
  15. 15.
    S.K. Moccelini, A.C. Franzoi, I.C. Vieira, J. Dupont, C.W. Scheeren, Biosens. Bioelectron. 26, 3549 (2011)CrossRefGoogle Scholar
  16. 16.
    K. Campos, T. Vincent, P. Bunio, A. Trochimczuk, E. Guibal, Solv. Extr. Ion Exch. 26, 570 (2008)CrossRefGoogle Scholar
  17. 17.
    Y. Wang, F. Caruso, Chem. Mater. 17, 953 (2005)CrossRefGoogle Scholar
  18. 18.
    S.A. Costa, A. Cavaco-Paulo, T. Tzanov, A. Paar, M. Gudelj, G.M. Gübitz, Enzyme Microb. Technol. 28, 815 (2001)CrossRefGoogle Scholar
  19. 19.
    R. Reshmi, G. Sanjay, S. Sugunan, Catal. Commun. 7, 460 (2006)CrossRefGoogle Scholar
  20. 20.
    W. Feng, P. Ji, Biotechnol. Adv. 29, 889 (2011)CrossRefGoogle Scholar
  21. 21.
    M. Amirbandeh, A. Taheri-Kafrani, A. Soozanipour, C. Gaillard, Biochem. Eng. J. 127, 119 (2017)CrossRefGoogle Scholar
  22. 22.
    M. Amirbandeh, A. Taheri-Kafrani, Int. J. Biol. Macromol. 93, 1183 (2016)CrossRefGoogle Scholar
  23. 23.
    X. Yang, X. Zhang, Y. Ma, Y. Huang, Y. Wang, Y. Chen, J. Mater. Chem. 19, 2710 (2009)CrossRefGoogle Scholar
  24. 24.
    A. Soozanipour, A. Taheri-Kafrani, A.L. Isfahani, Chem. Eng. J. 270, 235 (2015)CrossRefGoogle Scholar
  25. 25.
    S. Madakbaş, Ö Danış, S. Demir, M.V. Kahraman, Starch Stärke 65, 146 (2013)CrossRefGoogle Scholar
  26. 26.
    H. Shahrestani, A. Taheri-Kafrani, A. Soozanipour, O. Tavakoli, Biochem. Eng. J. 109, 51 (2016)CrossRefGoogle Scholar
  27. 27.
    P. Kumar, A. Gupta, S.R. Dhakate, R.B. Mathur, S. Nagar, V.K. Gupta, ‎Biotechnol. Appl. Biochem. 60, 162 (2013)CrossRefGoogle Scholar
  28. 28.
    A. Landarani-Isfahani, M. Taheri-Kafrani, A. Razmjou, A.V. Mirkhani, M. Moghadam, A. Soozanipour, Langmuir 31, 9219 (2015)CrossRefGoogle Scholar
  29. 29.
    L. Kumar, S. Nagar, A. Mittal, N. Garg, V.K. Gupta, J. Food Sci. Technol. 51, 1737 (2014)CrossRefGoogle Scholar
  30. 30.
    V. Mehnati-Najafabadi, A. Taheri-Kafrani, A.-K. Bordbar, ‎Int. J. Biol. Macromol. 107, 418 (2018)CrossRefGoogle Scholar
  31. 31.
    M. Royvaran, A. Taheri-Kafrani, A.L. Isfahani, S. Mohammadi, Chem. Eng. J. 288, 414 (2016)CrossRefGoogle Scholar
  32. 32.
    M. Defaei, A. Taheri-Kafrani, M. Miroliaei, P. Yaghmaei, Int. J. Biol. Macromol. 113, 354 (2018)CrossRefGoogle Scholar
  33. 33.
    A. Sarbu, M.N. De Pinho, M. do Rosário Freixo, F. Goncalves, I. Udrea. Enzyme Microb. Technol. 39, 125 (2006)CrossRefGoogle Scholar
  34. 34.
    H. Chen, L. Liu, S. Lv, X. Liu, M. Wang, A. Song, X. Jia, Appl. Biochem. Biotechnol. 162, 24 (2010)CrossRefGoogle Scholar
  35. 35.
    G. Ozyilmaz, J. Mol. Catal. B Enzym. 56, 231 (2009)CrossRefGoogle Scholar
  36. 36.
    J. Andre, D. Saleh, C. Syldatk, R. Hausmann, J. Mol. Catal. B Enzym. 125, 88 (2016)CrossRefGoogle Scholar
  37. 37.
    S. Yamamoto, A. Imamura, I. Susanti, K. Hori, Y. Tanji, H. Unno, Food Bioprod. Process. 83, 61 (2005)CrossRefGoogle Scholar
  38. 38.
    M. Roberts, M. Bentley, J. Harris, Adv. Drug Deliv. Rev. 64, 116 (2012)CrossRefGoogle Scholar
  39. 39.
    W.S. Hummers Jr., R.E. Offeman, ‎J. Am. Chem. Soc. 80, 1339 (1958)CrossRefGoogle Scholar
  40. 40.
    Z. Liu, J.T. Robinson, X. Sun, H. Dai, ‎J. Am. Chem. Soc 130, 10876 (2008)CrossRefGoogle Scholar
  41. 41.
    M.M. Bradford, ‎Anal. Biochem. 72, 248 (1976)CrossRefGoogle Scholar
  42. 42.
    M.J. Bailey, P. Biely, K. Poutanen, J. Biotechnol. 23, 257 (1992)CrossRefGoogle Scholar
  43. 43.
    K. Khoshnevisan, A.-K. Bordbar, D. Zare, D. Davoodi, M. Noruzi, M. Barkhi, M. Tabatabaei, Chem. Eng. J. 171, 669 (2011)CrossRefGoogle Scholar
  44. 44.
    H.-L. Guo, X.-F. Wang, Q.-Y. Qian, F.-B. Wang, X.-H. Xia, ACS Nano 3, 2653 (2009)CrossRefGoogle Scholar
  45. 45.
    N. Du, Y. Xu, H. Zhang, C. Zhai, D. Yang, ‎Nanoscale Res. Lett. 5, 1295 (2010)CrossRefGoogle Scholar
  46. 46.
    X.-Z. Tang, W. Li, Z.-Z. Yu, M.A. Rafiee, N. Yavari, Koratkar, J.F. Rafiee, Carbon 49, 1258 (2011)CrossRefGoogle Scholar
  47. 47.
    M. Roberge, R.N. Lewis, F. Shareck, R. Morosoli, D. Kluepfel, C. Dupont, R.N. McElhaney, Proteins 50, 341 (2003)CrossRefGoogle Scholar
  48. 48.
    C. Mattevi, G. Eda, S. Agnoli, S. Miller, K.A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, M. Chhowalla, Adv. Funct. Mater. 19, 2577 (2009)CrossRefGoogle Scholar
  49. 49.
    M.J. McAllister, J.-L. Li, D.H. Adamson, H.C. Schniepp, A.A. Abdala. J. Liu, M. Herrera-Alonso, D.L. Milius, R. Car, R.K. Prud’homme, Chem. Mater. 19, 4396 (2007)CrossRefGoogle Scholar
  50. 50.
    S. Zhang, P. Xiong, X. Yang, X. Wang, Nanoscale 3, 2169 (2011)CrossRefGoogle Scholar
  51. 51.
    H. Kim, A.A. Abdala, C.W. Macosko, Macromolecules 43, 6515 (2010)CrossRefGoogle Scholar
  52. 52.
    Z. Bibi, S.A.U. Qader, A. Aman, Extremophiles 19, 819 (2015)CrossRefGoogle Scholar
  53. 53.
    E. Serra, Á Mayoral, Y. Sakamoto, R.M. Blanco, I. Díaz, Micropor. Mesopor. Mater. 114, 201 (2008)CrossRefGoogle Scholar
  54. 54.
    E. Ranjbakhsh, A. Bordbar, M. Abbasi, A. Khosropour, E. Shams, Chem. Eng. J. 179, 272 (2012)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2018

Authors and Affiliations

  1. 1.Department of Biology, Science and Research BranchIslamic Azad UniversityTehranIran
  2. 2.Department of Biotechnology, Faculty of Advanced Sciences and TechnologiesUniversity of IsfahanIsfahanIran
  3. 3.Department of ChemistryUniversity of IsfahanIsfahanIran

Personalised recommendations