Advertisement

Journal of the Iranian Chemical Society

, Volume 16, Issue 1, pp 11–20 | Cite as

Efficient prediction of water vapor adsorption capacity in porous metal–organic framework materials: ANN and ANFIS modeling

  • Mahdi Niknam Shahrak
  • Morteza Esfandyari
  • Maryam Karimi
Original Paper
  • 24 Downloads

Abstract

Optimum design of water vapor separation process (dehumidification) using adsorption process mostly depends on the selection of appropriate porous materials or adsorbents with the highest equilibrium storage capacity of the vapor. Equilibrium capacity is generally evaluated through cost-demanding experiments via direct measurement of the vapor isotherm. Reliable prediction of the vapor adsorption capacity in porous materials provides a robust tool to a quick screening of porous materials appropriating for dehumidification process. In this article, adsorption capacity of water vapor in metal–organic framework (MOF) materials is predicted using two robust “artificial neural network (ANN)” and “Adaptive network-based fuzzy inference system (ANFIS)” methods. The three parameters of the surface area, pore volume and pore diameters are selected as input and the water vapor adsorption capacities of MOFs were computed as the output of the models. Comparison of the obtained results and real experimental data implied the superiority of the ANFIS and ANN models to predict the water vapor adsorption capacity into MOFs with a mean squared error (MSE) of 0.005 and 0.002, respectively. This clearly indicates a great potential for the application of both ANN and ANFIS methods to rapid screen MOFs suitable for water vapor adsorption.

Keywords

Artificial neural network ANFIS Metal–organic framework Adsorption 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

References

  1. 1.
    J. Canivet, A. Fateeva, Y. Guo, B. Coasne, D. Farrusseng, Water adsorption in MOFs: fundamentals and applications. Chem. Soc. Rev. 43(16), 5594–5617 (2014)CrossRefGoogle Scholar
  2. 2.
    U. Mueller, M. Schubert, F. Teich, H. Puetter, K. Schierle-Arndt, J. Pastre, Metal–organic frameworks—prospective industrial applications. J. Mater. Chem. 16(7), 626–636 (2006)CrossRefGoogle Scholar
  3. 3.
    M.N. Shahrak, M. Ghahramaninezhad, M. Eydifarash, Zeolitic imidazolate framework-8 for efficient adsorption and removal of Cr (VI) ions from aqueous solution. Environ. Sci. Pollut. Res. 24(10), 9624–9634 (2017)CrossRefGoogle Scholar
  4. 4.
    X. Wu, M.N. Shahrak, B. Yuan, S. Deng, Synthesis and characterization of zeolitic imidazolate framework ZIF-7 for CO2 and CH4 separation. Microporous Mesoporous Mater. 190, 189–196 (2014)CrossRefGoogle Scholar
  5. 5.
    A. Ayati, M.N. Shahrak, B. Tanhaei, M. Sillanpää, Emerging adsorptive removal of azo dye by metal–organic frameworks. Chemosphere 160, 30–44 (2016)CrossRefGoogle Scholar
  6. 6.
    M.N. Shahrak, Mo.N. Shahrak, A. Shahsavand, N. Khazeni, X. Wu, S. Deng, Synthesis, gas adsorption and reliable pore size estimation of zeolitic imidazolate framework-7 using CO2 and water adsorption. Chin. J. Chem. Eng. 25(5), 595–601 (2017)CrossRefGoogle Scholar
  7. 7.
    S. Kitagawa, R. Kitaura, S.i. Noro, Functional porous coordination polymers. Angew. Chem. Int. Ed. 43(18), 2334–2375 (2004)CrossRefGoogle Scholar
  8. 8.
    K.A. Cychosz, A.G. Wong-Foy, A.J. Matzger, Liquid phase adsorption by microporous coordination polymers: removal of organosulfur compounds. J. Am. Chem. Soc. 130(22), 6938–6939 (2008)CrossRefGoogle Scholar
  9. 9.
    W. Lu, D. Yuan, D. Zhao, C.I. Schilling, O. Plietzsch, T. Muller, S. Bräse, J. Guenther, J. Blümel, R. Krishna, Porous polymer networks: synthesis, porosity, and applications in gas storage/separation. Chem. Mater. 22(21), 5964–5972 (2010)CrossRefGoogle Scholar
  10. 10.
    A. Mantion, L. Massüger, P. Rabu, C. Palivan, L.B. McCusker, A. Taubert, Metal–peptide frameworks (MPFS): “bioinspired” metal organic frameworks. J. Am. Chem. Soc. 130(8), 2517–2526 (2008)CrossRefGoogle Scholar
  11. 11.
    M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O’keeffe, O.M. Yaghi, Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295(5554), 469–472 (2002)CrossRefGoogle Scholar
  12. 12.
    Y. Liu, V.C. Kravtsov, R. Larsen, M. Eddaoudi, Molecular building blocks approach to the assembly of zeolite-like metal–organic frameworks (ZMOFs) with extra-large cavities. Chem. Commun. 14, 1488–1490 (2006)CrossRefGoogle Scholar
  13. 13.
    H. Furukawa, F. Gándara, Y.B. Zhang, J. Jiang, W.L. Queen, M.R. Hudson, O.M. Yaghi, Water Adsorption in porous metal–organic frameworks and related materials. J. Am. Chem. Soc. 136(11), 4369–4381 (2014)CrossRefGoogle Scholar
  14. 14.
    S. Pirhadi, F. Shiri, J.B. Ghasemi, Multivariate statistical analysis methods in QSAR. RSC Adv. 127(5), 104635–104665 (2015)CrossRefGoogle Scholar
  15. 15.
    S. Yousefinejad, B. Hemmateenejad, Chemometrics tools in QSAR/QSPR studies: a historical perspective. Chemometr. Intell. Lab. Syst. 149, 177–204 (2015)CrossRefGoogle Scholar
  16. 16.
    M. Fernandez, T.K. Woo, C.E. Wilmer, R.Q. Snurr, Large-scale quantitative structure–property relationship (QSPR) analysis of methane storage in metal–organic frameworks. J. Phys. Chem. C 117(15), 7681–7689 (2013)CrossRefGoogle Scholar
  17. 17.
    Z.G. Qu, H. Wang, W. Zhang, L. Zhou, Y.X. Chang, Prediction and experimental verification of CO2 adsorption on Ni/DOBDC using a genetic algorithm–back-propagation neural network model. Ind. Eng. Chem. Res. 53(30), 12044–12053 (2014)CrossRefGoogle Scholar
  18. 18.
    Z. Yıldız, H. Uzun, Prediction of gas storage capacities in metal organic frameworks using artificial neural network. Microporous Mesoporous Mater. 208, 50–54 (2015)CrossRefGoogle Scholar
  19. 19.
    S. Rashidi, A. Ahmadpour, N. Jahanshahi, M.J. Darabi Mahboub, H. Rashidi, Application of artificial intelligent modeling for predicting activated carbons properties used for methane storage. J. Sep. Sci. Technol. 50, 110–120 (2015)CrossRefGoogle Scholar
  20. 20.
    M. Namvar-Asl, M. Soltanieh, A. Rashidi, A. Irandoukht, Modeling and preparation of activated carbon for methane storage I. Modeling of activated carbon characteristics with neural networks and response surface method. Energy Convers. Manag. 49(9), 2471–2477 (2008)CrossRefGoogle Scholar
  21. 21.
    M. Namvar-Asl, M. Soltanieh, A. Rashidi, Modeling and preparation of activated carbon for methane storage II. Neural network modeling and experimental studies of the activated carbon preparation. Energy Convers. Manag. 49(9), 2478–2482 (2008)CrossRefGoogle Scholar
  22. 22.
    Z. Shahryari, A. Sharifi, M. Mohebbi (2013) Artificial neural network (ANN) approach for modeling and formulation of phenol adsorption onto activated carbon. J. Eng. Thermophys. 22:322–336CrossRefGoogle Scholar
  23. 23.
    S. Ashoori, A. Abedini, R. Abedini, K.Q. Nasheghi, Comparison of scaling equation with neural network model for prediction of asphaltene precipitation. J. Petrol. Sci. Eng. 72(1), 186–194 (2010)CrossRefGoogle Scholar
  24. 24.
    H. Salehi, M. Amiri, M. Esfandyari, Using artificial neural network (ANN) for manipulating energy gain of nansulate coating. J. Nanotechnol. Eng. Med. 2(1), 011017 (2011)CrossRefGoogle Scholar
  25. 25.
    R.J. Kuo, C. Chen, Y. Hwang, An intelligent stock trading decision support system through integration of genetic algorithm based fuzzy neural network and artificial neural network. Fuzzy Sets Syst. 118(1), 21–45 (2001)CrossRefGoogle Scholar
  26. 26.
    B. Rahmanian, M. Pakizeh, S.A.A. Mansoori, M. Esfandyari, D. Jafari, H. Maddah, A. Maskooki, Prediction of MEUF process performance using artificial neural networks and ANFIS approaches. J. Taiwan Inst. Chem. Eng. 43(4), 558–565 (2012)CrossRefGoogle Scholar
  27. 27.
    M. Esfandyari, M. Amiri, M.K. Salooki, Neural network prediction of the Fischer-Tropsch synthesis of natural gas with Co(III)/Al2O3 catalyst. Chem. Eng. Res. Bull. 17(1), 25–33 (2015)CrossRefGoogle Scholar
  28. 28.
    A.H. Moghaddam, M.H. Moghaddam, M. Esfandyari, Stock market index prediction using artificial neural network. J. Econ. Finance Adm. Sci. 21(41), 89–93 (2016)Google Scholar
  29. 29.
    M. Esfandyari, M.A. Fanaei, R. Gheshlaghi, M.A. Mahdavi, Neural network and neuro-fuzzy modeling to investigate the power density and Columbic efficiency of microbial fuel cell. J. Taiwan Inst. Chem. Eng. 58, 84–91 (2016)CrossRefGoogle Scholar
  30. 30.
    A.F. Güneri, T. Ertay, A. YüCel, An approach based on ANFIS input selection and modeling for supplier selection problem. Expert. Syst. Appl. 38(12), 14907–14917 (2011)CrossRefGoogle Scholar
  31. 31.
    A. Shahsavand, A. Ahmadpour, Application of optimal RBF neural networks for optimization and characterization of porous materials. Comput. Chem. Eng. 29(10), 2134–2143 (2005)CrossRefGoogle Scholar
  32. 32.
    R. Abedini, M. Esfandyari, A. Nezhadmoghadam, B. Rahmanian, The prediction of undersaturated crude oil viscosity: an artificial neural network and fuzzy model approach. Pet. Sci. Technol. 30(19), 2008–2021 (2012)CrossRefGoogle Scholar
  33. 33.
    H. Salehi, S. Zeinali-Heris, M. Esfandyari, M. Koolivand, Nero-fuzzy modeling of the convection heat transfer coefficient for the nanofluid. Heat Mass Transf. 49(4), 575–583 (2013)CrossRefGoogle Scholar
  34. 34.
    W. Shen, C.C. Chan, E.W. Lo, K. Chau, Adaptive neuro-fuzzy modeling of battery residual capacity for electric vehicles. IEEE Trans. Industr. Electron. 49(3), 677–684 (2002)CrossRefGoogle Scholar
  35. 35.
    F. Glover (1985) Future paths for integer programming and links to artificial intelligence’, CAAI Report 85–8. Center for Applied Artificial Intelligence, University of Colorado, OctoberGoogle Scholar
  36. 36.
    F. Glover, M. Laguna (2013), Tabu Search, 1st edn., (Springer, Berlin)Google Scholar
  37. 37.
    C.-L. Huang, N.-S. Hsu, C.-C. Wei, C.-W. Lo, Using artificial intelligence to retrieve the optimal parameters and structures of adaptive network-based fuzzy inference system for typhoon precipitation forecast modeling. Adv. Meteorol. 20(15), 1–22 (2015)Google Scholar
  38. 38.
    A. Zamaniyan, F. Joda, A. Behroozsarand, H. Ebrahimi, Application of artificial neural networks (ANN) for modeling of industrial hydrogen plant. Int. J. Hydrog. Energy 38(15), 6289–6297 (2013)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2018

Authors and Affiliations

  • Mahdi Niknam Shahrak
    • 1
  • Morteza Esfandyari
    • 2
  • Maryam Karimi
    • 1
  1. 1.Department of Chemical EngineeringQuchan University of TechnologyQuchanIran
  2. 2.Department of Chemical EngineeringUniversity of BojnordBojnordIran

Personalised recommendations