Advertisement

Journal of the Iranian Chemical Society

, Volume 16, Issue 1, pp 1–9 | Cite as

Novel hierarchical TiO2@ZIF-8 for photodecolorization of semi-real sample bromothymol blue aqueous solution

  • Razieh FazaeliEmail author
  • Hamid Aliyan
Original Paper
  • 59 Downloads

Abstract

A TiO2@ZIF-8 hierarchical structure built up of a well-ordered array was achieved by an easy handling of Zn(NO3)2·6H2O, 2-methylimidazole and TiO2 mixture in DMF with solvothermal behavior. It is believed that solvothermal cause to the driving force for the accomplished TiO2 rod to self-assemble into ZIF-8, which performed as the substrate for secondary heterogeneous nucleation, and afterwards the crystal growth happened into development of a TiO2@ZIF-8 rod arrangement. The TiO2@ZIF-8 hierarchical rod array structure was characterized by FTIR, XRD, SEM, EDX, ICP, DRS, TG, NH3–TPD and BET and employed as photocatalyst for photodecolorization of bromothymol blue (BTB) aqueous solution under Hg lamp irradiation. The optimum values of the experimental parameters which affect the decolorization efficiency were attained as: 0.1 g L−1 of the 7% TiO2@ZIF-8.30 ppm dye concentration and pH 6.5. The decolorization kinetics was fitted well to the Langmuir–Hinshelwood first-order rate law. It was found that the catalyst displayed significantly high catalytic stability, and the activity loss is appearing after four BTB decolorization cycles.

Graphical abstract

Keywords

TiO2@ZIF-8 Hierarchical structure Solvothermal Degradation Bromothymol blue (BTB) 

Notes

Acknowledgements

We gratefully thank Shahreza Branch, Islamic Azad University for the financial support.

References

  1. 1.
    Z. Wang, J. Gong, Y. Su, Y. Jiang, S. Yang, Cryst. Growth Des. 10, 2455 (2010)CrossRefGoogle Scholar
  2. 2.
    M. Palumbo, T. Lutz, C.E. Giusca, H. Shiozawa, V. Stolojan, D.C. Cox, R.M. Wilson, S.J. Henley, S.R.P. Silva, Cryst. Growth Des. 9, 3432 (2009)CrossRefGoogle Scholar
  3. 3.
    K.D.G.I. Jayawardena, C. Opoku, J. Fryar, S.R.P. Silva, S.J. Henley, Appl. Surf. Sci. 257, 5274 (2010)CrossRefGoogle Scholar
  4. 4.
    G. Chen, S. Wang, R. Yi, L. Tan, H. Li, M. Zhou, L. Yan, Y. Jiang, S. Tan, D. Wang, S. Deng, X. Meng, H. Luo, J. Mater. Chem. A 4, 9653 (2016)CrossRefGoogle Scholar
  5. 5.
    Q. Zhang, Y. Deng, Z. Hu, Y. Liu, M. Yao, P. Liu, Phys. Chem. Chem. Phys. 16, 23451 (2014)CrossRefGoogle Scholar
  6. 6.
    S. Chen, G. Sun, ACS Appl. Mater. Interfaces 5, 6473 (2013)CrossRefGoogle Scholar
  7. 7.
    Y. Qin, X.D. Wang, Z.L. Wang, Nature 451, 809 (2008)CrossRefGoogle Scholar
  8. 8.
    W. Li, S. Zhang, Q. Fan, F. Zhang, S. Xu, Nanoscale 9, 5677 (2017)CrossRefGoogle Scholar
  9. 9.
    M. Zhang, C. Shao, Z. Guo, Z. Zhang, J. Mu, T. Cao, Y. Liu, ACS Appl. Mater. Interfaces 3, 369 (2011)CrossRefGoogle Scholar
  10. 10.
    H. Yang, L. Hao, N. Zhao, C. Du, Y. Wang, Cryst. Eng. Comm 15, 5760 (2013)CrossRefGoogle Scholar
  11. 11.
    A. Saepurahman, M.A. Abdullah, F.K. Chong, Chem. Eng. J. 158, 418 (2010)CrossRefGoogle Scholar
  12. 12.
    R. Fazaeli, H. Aliyan, S. Tangestaninejad, S. Parishani foroushani, J. Iran. Chem. Soc. 11, 1687 (2014)CrossRefGoogle Scholar
  13. 13.
    S. Chin, E. Park, M. Kim, J. Jurng, Powder Tech. 201, 171 (2010)CrossRefGoogle Scholar
  14. 14.
    X.C. Huang, Y.Y. Lin, J.P. Zhang, X.M. Chen, Angew. Chem. 118, 1587 (2006)CrossRefGoogle Scholar
  15. 15.
    Y.Q. Tian, Y.M. Zhao, Z.X. Chen, G.N. Zhang, L.H. Weng, D.Y. Zhao, Chem. Eur. J. 13, 4146 (2007)CrossRefGoogle Scholar
  16. 16.
    Y.Q. Tian, S.Y. Yao, D. Gu, K.H. Cui, D.W. Guo, G. Zhang, Z.X. Chen, D.Y. Zhao, Chem. Eur. J. 16, 1137 (2010)CrossRefGoogle Scholar
  17. 17.
    R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M. O_Keeffe, O.M. Yaghi, Science 319, 939 (2008)CrossRefGoogle Scholar
  18. 18.
    J. Zhang, T. Wu, C. Zhou, S. Chen, P. Feng, X. Bu, Angew. Chem. 121, 2580 (2009)CrossRefGoogle Scholar
  19. 19.
    M. Saeedi, R. Fazaeli, H. Aliyan, J. Sol Gel Sci. Tech. 77, 404 (2016)CrossRefGoogle Scholar
  20. 20.
    N. Ebrahimi, R. Fazaeli, H. Aliyan, Z. Naturforsch. 71, 211 (2016)CrossRefGoogle Scholar
  21. 21.
    P. Qin, A.L. Domanski, A.K. Chandiran, R. Berger, H.-J. Butt, M.I. Dar, T. Moehl, N. Tetreault, P. Gao, S. Ahmad, M.K. Nazeeruddin, M. Grätzel, Nanoscale 6, 1508 (2014)CrossRefGoogle Scholar
  22. 22.
    U.P.N. Tran, K.K.A. Le, N.T.S. Phan, ACS Catal. 1, 120 (2011)CrossRefGoogle Scholar
  23. 23.
    H. Kaur, G.C. Mohanta, V. Gupta, D. Kukkar, S. Tyagi, J. Drug Deliv. Sci. Technol. 41, 106 (2017)CrossRefGoogle Scholar
  24. 24.
    Y. Zhanga, Q. Lia, C. Liua, X. Shanc, X. Chena, W. Daia, X. Fu, Appl. Catal. B Environ. 224, 283 (2018)CrossRefGoogle Scholar
  25. 25.
    J.C.-S. Wu, C.-H. Chen, J. Photochem. A Photobiol. Chem. 163(3), 509 (2004)CrossRefGoogle Scholar
  26. 26.
    K. Zhou, Y. Zhu, X. Yang, X. Jiang, C. Li, New J. Chem. 35, 353 (2011)CrossRefGoogle Scholar
  27. 27.
    M. Zhu, D. Srinivas, S. Bhogeswararao, P. Ratnasamy, M.A. Carreon, Catal. Commun. 32, 36 (2013)CrossRefGoogle Scholar
  28. 28.
    M. Guedes, J.A. Ferreira, A. Ferro, Colloids Interface Sci. 337, 439 (2009)CrossRefGoogle Scholar
  29. 29.
    M. El-Kemary, Y. Abdel-Moneam, M. Madkour, I. El-Mehasseb, J. Lumin. 131, 570 (2011)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2018

Authors and Affiliations

  1. 1.Department of ChemistryIslamic Azad UniversityShahrezaIran

Personalised recommendations