Advertisement

Journal of the Iranian Chemical Society

, Volume 15, Issue 12, pp 2789–2801 | Cite as

High visible light-driven photocatalytic activity of large surface area Cu doped SnO2 nanorods synthesized by novel one-step microwave irradiation method

  • M. Parthibavarman
  • S. Sathishkumar
  • S. Prabhakaran
  • M. Jayashree
  • R. BoopathiRaja
Original Paper
  • 11 Downloads

Abstract

The paper investigates the structural, optical and photocatalytic activity of large surface area single crystalline copper (Cu) doped SnO2 nanorods (NRs) synthesized by a novel one-step microwave irradiation method. Powder X-ray diffraction (XRD) analysis confirms that both pure and Cu doped SnO2 are tetragonal rutile type structure (space group P42/mnm) formed during the microwave process within 10 min without any post annealing treatment. Transmission electron microscopy (TEM) reveals that the as synthesized Cu doped SnO2 samples exhibited rod-like shape and the length was less than 80 nm and diameter was about few nanometers. Typical selected-area electron diffraction (SAED) pattern indicates that, the growth direction of Cu–SnO2 nanorod is along [110] direction. The variety of phonon interaction in the pure and Cu doped SnO2 is observed by Raman spectroscopy. Electron paramagnetic resonance and X-ray photoelectron spectroscopy (XPS) confirms that the presence of copper and tin as Cu2+ and Sn4+ in state, respectively. The photocatalytic activity was monitored via the degradation of methylene blue (MB) and Rhodamine B (RhB) dyes and the Cu–SnO2 showed better photocatalytic activity than that of pure SnO2. This could be attributed to the effective electron–hole separation by surface modification.

Keywords

Metal oxide semiconductors SnO2 Cu doping Nanorods Microwave Photocatalyst 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest regarding the research work reported in this manuscript.

References

  1. 1.
    G.C. Collazzo, E.L. Foletto, S.L. Jahn, M.A. Villetti, J. Environ. Manage. 98, 107 (2012)CrossRefGoogle Scholar
  2. 2.
    J. Yang, X. Zhang, C. Wang, P. Sun, L. Wang, B. Xia, Y. Liu, Solid State Sci. 14, 139 (2012)CrossRefGoogle Scholar
  3. 3.
    C. Karunakaran, V. Rajeswari, P. Gomathisankar, Solid State Sci. 13, 923 (2011)CrossRefGoogle Scholar
  4. 4.
    M. Qamar, Z.H. Yamani, M.A. Gondal, K. Alhooshani, Solid State Sci. 13, 1748 (2011)CrossRefGoogle Scholar
  5. 5.
    A. Qurashi, Z. Zhong, M.W. Alam, Solid State Sci. 12, 1516 (2010)CrossRefGoogle Scholar
  6. 6.
    E.J. Li, K. Xia, S.F. Yin, W.L. Dai, S.L. Luo, C.T. Au, Mater. Chem. Phys. 125, 236 (2011)CrossRefGoogle Scholar
  7. 7.
    B. Babu, A.N. Kadam, R.V.S.S.N. Ravikumar, C. Byon, J. Alloy. Compd. 703, 330 (2017)CrossRefGoogle Scholar
  8. 8.
    C.V. Reddy, B. Babu, S.P. Vattikuti, R.V.S.S.N. Ravikumar, J. Shim, J. Lumin. 179, 26 (2016)CrossRefGoogle Scholar
  9. 9.
    K. Vignesh, R. Hariharan, M. Rajarajan, A. Suganthi, Solid State Sci. 21, 91 (2013)CrossRefGoogle Scholar
  10. 10.
    M. Davis, F. Hung-Low, W.M. Hikal, L.J. Hope-Weeks, J. Mater. Sci. 48, 6404 (2013)CrossRefGoogle Scholar
  11. 11.
    A. Azita Nouri, Fakhria, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 138, 563 (2015)CrossRefGoogle Scholar
  12. 12.
    M. Parthibavarman, K. Vallalperuman, S. Sathishkumar, M. Durairaj, K. Thavamani, J. Mater. Sci. Mater. Electron. 25, 730 (2014)CrossRefGoogle Scholar
  13. 13.
    M. Parthibavarman, S. Sathishkumar, S. Prabhakaran, J. Mater. Sci. Mater. Elec. 13, 2341 (2018)CrossRefGoogle Scholar
  14. 14.
    M. Parthibavarman, M. Karthik, P. Sathishkumar, R. Poonguzhali, J. Iran. Chem. Soc. 15, 1419 (2018)CrossRefGoogle Scholar
  15. 15.
    M. Parthibavarman, V. Hariharan, C. Sekar, V.N. Singh, J. Optoelect. Adv. Mater. 12, 1894 (2010)Google Scholar
  16. 16.
    M. Karthik, M. Parthibavarman, A. Kumaresan, S. Prabhakaran, V. Hariharan, R. Poonguzhali, S. Sathishkumar, J. Mater. Sci. Mater. Electron. 28, 6635 (2017)CrossRefGoogle Scholar
  17. 17.
    S.P. Porto, P.A. Fleury, T.C. Damen, Phys Rev. 154, 522 (1967)CrossRefGoogle Scholar
  18. 18.
    F.P. Wang, X.T. Zhou, J.G. Zhou, T.K. Sham, Z.F. Ding. J. Phys. Chem. C 111, 18839 (2007)CrossRefGoogle Scholar
  19. 19.
    A. Johari, A. Zohari, M.C. Bhatnagar, M. Sharma, J. Nanosci. Nanotechnol. 14, 5288 (2014)CrossRefGoogle Scholar
  20. 20.
    A. Bouaine, N. Brihi, G. Schmerber, C. Ulhaq-Bouillet, S. Colis, A. Dinia, J. Phys. Chem. C 111, 2924 (2007)CrossRefGoogle Scholar
  21. 21.
    V. Hariharan, S. Radhakrishnan, M. Parthibavarman, R. Dhilipkumar, C. Sekar, Talanta. 85, 2166 (2011)CrossRefGoogle Scholar
  22. 22.
    S. Nilavazhagan, S. Muthukumaran, M. Ashokkumar, J. Mater. Sci. Mater. Electron. 24, 2581 (2013)CrossRefGoogle Scholar
  23. 23.
    L.M. Fang, X.T. Zu, Z.J. Li, S. Zhu, C.M. Liu, L.M. Wang, F. Gao, J. Mater. Sci. Mater. Electron. 19, 868 (2008)CrossRefGoogle Scholar
  24. 24.
    V. Kumar, V. Kumar, S. Som, J.H. Neethling, M. Lee, O.M. Ntwaeaborwa, H.C. Swart, Nanotech. 25, 135701 (2014)CrossRefGoogle Scholar
  25. 25.
    A. Jagannatha Reddy, M.K. Kokila, H. Nagabhushana, R.P.S. Chakradhar, C. Shivakumara, J.L. Rao, B.M. Nagabhushana, J. Alloy. Compd. 509, 5349 (2011)CrossRefGoogle Scholar
  26. 26.
    A. Bokare, A. Sanap, M. Pai, S. Sabharwal, A.A. Athawale, Colloids Surf B Biointerface. 102, 273 (2013)CrossRefGoogle Scholar
  27. 27.
    A. Maleki, M. Safari, B. Shahmoradi, Y. Zandsalimi, H. Daraei, F. Gharibi, Environ. Sci. Pollut. Res. 22, 16875 (2015)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2018

Authors and Affiliations

  1. 1.PG and Research Department of PhysicsChikkaiah Naicker CollegeErodeIndia
  2. 2.Research and Development CentreBharathiar UniversityCoimbatoreIndia
  3. 3.Centre for Crystal GrowthVIT UniversityVelloreIndia

Personalised recommendations