Advertisement

Journal of the Iranian Chemical Society

, Volume 15, Issue 9, pp 2033–2081 | Cite as

Nucleophilic ring-opening of epoxides: trends in β-substituted alcohols synthesis

  • Mehdi Fallah-Mehrjardi
  • Ali Reza Kiasat
  • Khodabakhsh Niknam
Original Paper

Abstract

The present review deals with the ring-opening of epoxides by various carbon, nitrogen, oxygen, halogen, and sulfur-containing nucleophiles, which most of the resulting products are versatile intermediates in the synthesis of various biologically active compounds. The regioselectivity and environmentally benign nature of procedures for the synthesis of similar products have been also discussed in detail.

Keywords

Ring-opening of epoxides Azidohydrins Thiocyanohydrins Cyanohydrins β-Aminoalcohols β-Nitroalcohols β-Nitratoalcohols halohydrins Aminolysis Alcoholysis Hydrolysis Acetolysis 

References

  1. 1.
    E.J. Corey, S. Shibata, R.K. Bakshi, An efficient and catalytically enantioselective route to (S)-(−)-phenyloxirane. J. Org. Chem. 53, 2861–2863 (1988)CrossRefGoogle Scholar
  2. 2.
    J. Schubert, R. Schwesinger, H. Prinzbach, Total synthesis of a fortimicin aglycone. Angew. Chem. Int. Ed. Engl. 23, 167–169 (1984)CrossRefGoogle Scholar
  3. 3.
    S.U. Sonavane, M. Chidambaram, S. Khalil, J. Almog, Y. Sasson, Synthesis of cyclic disulfides using didecyldimethylammonium bromide as phase transfer catalyst. Tetrahedron Lett. 49, 520–522 (2008)CrossRefGoogle Scholar
  4. 4.
    J.G. Badiang, J. Aube, One-step conversion of aldehydes to oxazolines and 5,6-dihydro-4H-1,3-oxazines using 1,2- and 1,3-azido alcohols. J. Org. Chem. 61, 2484–2487 (1996)CrossRefGoogle Scholar
  5. 5.
    B.T. Smith, V. Gracias, J. Aubé, Regiochemical studies of the ring expansion reactions of hydroxy azides with cyclic ketones. J. Org. Chem. 65, 3771–3774 (2000)CrossRefPubMedGoogle Scholar
  6. 6.
    E.F.V. Scriven, K. Turnbull, Azides: their preparation and synthetic uses. Chem. Rev. 88, 297–368 (1988)CrossRefGoogle Scholar
  7. 7.
    S. Patai, The chemistry of the azido group (Wiley, New York, 1971)Google Scholar
  8. 8.
    D.E. Orr, Synthesis of acylated enamino esters. Synthesis, 618–619 (1984)Google Scholar
  9. 9.
    H.B. Mereyala, B. Frei, Preparation of vicinal azidohydrins by reaction of oxiranes with triethylaluminium/hydrogen azide. Helv. Chim. Acta 69, 415–418 (1986)CrossRefGoogle Scholar
  10. 10.
    S.W. Chen, S.S. Thakur, W. Li, C.K. Shin, R.B. Kawthekar, G.J. Kim, Efficient catalytic synthesis of optically pure 1,2-azido alcohols through enantioselective epoxide ring opening with HN3. J. Mol. Catal. A Chem. 259, 116–120 (2006)CrossRefGoogle Scholar
  11. 11.
    S. Saito, S. Yamashita, T. Nishikawa, Y. Yokoyama, Highly nucleophillc tributyltin azide in oxirane ring cleavage leading to 1,2-azido alcohols. Tetrahedron Lett. 30, 4153–4156 (1989)CrossRefGoogle Scholar
  12. 12.
    S. Saito, T. Nishikawa, Y. Yokoyama, T. Moriwake, Efficient nucleophilic oxirane ring cleavage with dibutyltin diazide. Tetrahedron Lett. 31, 221–224 (1990)CrossRefGoogle Scholar
  13. 13.
    F. Benedetti, F. Berti, S. Norbedo, Regio- and stereoselective ring opening of 2,3-epoxyalcohols with diethylaluminium azide. Tetrahedron Lett. 39, 7971–7974 (1998)CrossRefGoogle Scholar
  14. 14.
    P. Crotti, V. Di Bussolo, L. Favero, F. Macchia, M. Pineschi, A novel effective transition metal based salt-catalyzed azidolysis of 1,2-epoxides. Tetrahedron Lett. 37, 1675–1678 (1996)CrossRefGoogle Scholar
  15. 15.
    L. Birkofer, P. Wegner, Trimethylsilyl azide. Org. Synth. 50, 107–110 (1970)CrossRefGoogle Scholar
  16. 16.
    M. Hayashi, K. Kohmura, N. Oguni, Asymmetric ring opening of symmetrical epoxides with trimethylsilyl azide using chiral titanium complexes. Synlett, 774–776 (1991)Google Scholar
  17. 17.
    M. Meguro, N. Asao, Y. Yamamoto, Ytterbium triisopropoxide catalysed ring opening of epoxides with trimethylsilyl azide. J. Chem. Soc. Chem. Commun., 1021–1022 (1995)Google Scholar
  18. 18.
    B. Karl, J.L. Hansen, A. Leighton, E.N. Jacobsen, On the mechanism of asymmetric nucleophilic ring-opening of epoxides catalyzed by (salen)CrIII complexes. J. Am. Chem. Soc. 118, 10924–10925 (1996)CrossRefGoogle Scholar
  19. 19.
    A. Kamal, M. Arifuddin, M.V. Rao, Enantioselective ring opening of epoxides with trimethylsilyl azide (TMSN3) in the presence of β-cyclodextrin: an efficient route to 1,2-azido alcohols. Tetrahedron Asymmetry, 4261–4264 (1999)Google Scholar
  20. 20.
    C. Schneider, Quaternary ammonium salt catalyzed azidolysis of epoxides with trimethylsilyl azide. Synlett, 1840–1842 (2000)Google Scholar
  21. 21.
    H. Konno, E. Toshiro, N. Hinoda, An epoxide ring-opening reaction via hypervalent silicate intermediate: synthesis of statine. Synthesis, 2161–2164 (2003)Google Scholar
  22. 22.
    A.R. Kiasat, S. Nazari, Application of β-cyclodextrin-polyurethane as a stationary microvessel and solid-liquid phase-transfer catalyst: preparation of benzyl cyanides and azides in water. Catal. Commun. 18, 102–105 (2012)CrossRefGoogle Scholar
  23. 23.
    S.H. Park, Acceleration of azidation by microwave irradiation. Bull. Korean Chem. Soc. 24, 253–255 (2003)CrossRefGoogle Scholar
  24. 24.
    A.R. Hajipour, A. Rajaei, A.E. Ruoho, A mild and efficient method for preparation of azides from alcohols using acidic ionic liquid [H-NMP]HSO4. Tetrahedron Lett. 50, 708–711 (2009)CrossRefGoogle Scholar
  25. 25.
    A.R. Kiasat, S. Nazari, Synthesis, characterization and application of β-cyclodextrin-silica nanocomposite as potential microvessel in nucleophilic substitution reaction of phenacyl halides. J. Incl. Phenom. Macrocycl. Chem. 77, 429–438 (2013)CrossRefGoogle Scholar
  26. 26.
    S. Faiz, A.F. Zahoor, N. Rasool, M. Yousaf, A. Mansha, M. Zia-Ul-Haq, H.Z.E. Jaafar, Synthesis and consecutive reactions of α-azido ketones: a review. Molecules 20, 14699–14745 (2015)CrossRefPubMedGoogle Scholar
  27. 27.
    M. Onaka, K. Sugita, Y. Izumi, Solid-supported sodium azide reagents: their preparation and reactions with epoxides. J. Org. Chem. 54, 1116–1123 (1989)CrossRefGoogle Scholar
  28. 28.
    B. Tamami, N. Iranpoor, R. Rezaie, Synthesis of azidohydrins, nitrohydrins and nitratohydrins from epoxides using azide, nitrite and nitrate exchange resins. Iran. Polym. J. 13, 495–501 (2004)Google Scholar
  29. 29.
    M. Chini, P. Crotti, F. Macchia, Efficient metal salt catalyzed azidolysis of epoxides with sodium azide in acetonitrile. Tetrahedron Lett. 31, 5641–5644 (1990)CrossRefGoogle Scholar
  30. 30.
    N. Iranpoor, F. Kazemi, Regioselective azidolysis of epoxides catalyzed with Ce(IV). Synth. Commun. 29, 561–566 (1999)CrossRefGoogle Scholar
  31. 31.
    F. Kazemi, A.R. Kiasat, S. Ebrahimi, Regioselective azidolysis of epoxides catalyzed with LiBF4. Synth. Commun. 33, 999–1004 (2003)CrossRefGoogle Scholar
  32. 32.
    G. Sabitha, R.S. Babu, M. Rajkumar, J.S. Yadav, Cerium(III) chloride promoted highly regioselective ring opening of epoxides and aziridines using NaN3 in acetonitrile: a facile synthesis of 1,2-azidoalcohols and 1,2-azidoamines. Org. Lett. 4, 343–345 (2002)CrossRefPubMedGoogle Scholar
  33. 33.
    K. Bhaumik, U.W. Mali, K.G. Akamanchi, High yield regioselective ring opening of epoxides using samarium chloride hexahydrate. Synth. Commun. 33, 1603–1610 (2003)CrossRefGoogle Scholar
  34. 34.
    B. Tamami, H. Mahdavi, Synthesis of azidohydrins from epoxides using quaternized amino functionalized cross-linked polyacrylamide as a new polymeric phase-transfer catalyst. Tetrahedron Lett. 42, 8721–8724 (2001)CrossRefGoogle Scholar
  35. 35.
    A.R. Kiasat, R. Badri, B. Zargar, S. Sayyahi, Poly(ethylene glycol) grafted onto dowex resin: an efficient, recyclable, and mild polymer-supported phase transfer catalyst for the regioselective azidolysis of epoxides in water. J. Org. Chem. 73, 8382–8385 (2008)CrossRefPubMedGoogle Scholar
  36. 36.
    A.R. Kiasat, R. Mirzajani, H. Shalbaf, T. Tabatabaei, M. Fallah-mehrjardi, Green regioselective azidolysis of epoxides catalyzed by multi-site phase-transfer catalyst. J. Chin. Chem. Soc. 56, 594–599 (2009)CrossRefGoogle Scholar
  37. 37.
    A.R. Kiasat, F. Ataeian, M. Fallah-mehrjardi, B-podands as efficient catalysts for the ring opening of epoxides in water: a versatile and atom economical method for the synthesis of vicinal azidoalcohols. Iran. J. Catal 2, 1–5 (2012)Google Scholar
  38. 38.
    A.R. Kiasat, N. Ayashi, M. Fallah-Mehrjardi, Greener and facile aqueous regioselective synthesis of vicinal azidoalcohols using silica-bound 3-((polyethyleneglycol)ethyl)-8-methyl-1H-imidazol-3-ium bromide as a recyclable catalyst. J. Iran. Chem. Soc. 10, 1175–1181 (2013)CrossRefGoogle Scholar
  39. 39.
    B. Mombeni Godajdar, S. Mombeni, Polyethylene glycol functionalized magnetic dicationic ionic liquids as a novel catalyst and their application in ring opening of epoxides in water. J. Chin. Chem. Soc. 62, 404–411 (2015)CrossRefGoogle Scholar
  40. 40.
    A.R. Kiasat, F. Chadorian, S.J. Saghanezhad, Synthesis and characterization of a novel Fe3O4@SiO2/bipyridinium dichloride nanocomposite and its application as a magnetic and recyclable phase-transfer catalyst in the preparation of β-azidoalcohols, β-cyanohydrins, and β-acetoxy alcohols. C. R. Chim. 18, 1297–1306 (2015)CrossRefGoogle Scholar
  41. 41.
    A.R. Kiasat, M. Daei, S.J. Saghanezhad, Synthesis and characterization of a novel nano-Fe3O4-copoly[(styrene/acrylic acid)/grafted ethylene oxide and its application as a magnetic and recyclable phase-transfer catalyst in the preparation of β-azido alcohols and β-nitro alcohols. Res. Chem. Intermed. 42, 581–594 (2016)CrossRefGoogle Scholar
  42. 42.
    E. Rezaee Nezhad, E. Pourmalekshahi, Si-Imidazole-HSO4 functionalized magnetic Fe3O4 nanoparticles as an efficient and reusable catalyst for the regioselective ring opening of epoxides in water. Nanotechnol. Chem. Res. 1, 108–117 (2016)Google Scholar
  43. 43.
    J.H.L. Spelberg, J.E.T.H. Van Vlieg, L. Tang, D.B. Janssen, R.M. Kellogg, Highly enantioselective and regioselective biocatalytic azidolysis of aromatic epoxides. Org. Lett. 3, 41–43 (2001)CrossRefPubMedGoogle Scholar
  44. 44.
    D.B. Janssen, M. Majeri, G. Hasnaoui, B. Hauer, J.H.L. Spelberg, Enantioselective formation and ring-opening of epoxides catalysed by halohydrin dehalogenases. Biochem. Soc. Trans. 34, 291–295 (2006)CrossRefPubMedGoogle Scholar
  45. 45.
    G. Sabitha, R.S. Babu, M.S. Reddy, J.S. Yadav, Ring opening of epoxides and aziridines with sodium azide using oxone® in aqueous acetonitrile: a highly regioselective azidolysis reaction. Synthesis 2254–2258 (2002)Google Scholar
  46. 46.
    A.R. Kiasat, F. Kazemi, Silica gel promoted highly regioselective ring opening of epoxides using NaN3 under solvent free conditions. Phosphorus Sulfur Silicon 178, 2387–2392 (2003)CrossRefGoogle Scholar
  47. 47.
    N. Iranpoor, H. Firouzabadi, M. Shekarize, Micellar media for the efficient ring opening of epoxides with CN, N3 , NO3 , NO2 , SCN, Cl and Br catalyzed with Ce(OTf)4. Org. Biomol. Chem. 1, 724–727 (2003)CrossRefPubMedGoogle Scholar
  48. 48.
    B. Tamami, M. Kolahdoozan, H. Mahdavi, Regioselective azidolysis of epoxides in water using poly(vinylamine) and poly(allylamine) as new polymeric cosolvents. Iran. Polym. J. 13, 21–28 (2004)Google Scholar
  49. 49.
    J. Boruwa, J.C. Borah, B. Kalita, N.C. Barua, Highly regioselective ring opening of epoxides using NaN3: a short and efficient synthesis of (−)-cytoxazone. Tetrahedron Lett. 45, 7355–7358 (2004)CrossRefGoogle Scholar
  50. 50.
    B. Yadollahi, H. Danafar, A facile synthesis of 1,2-azidoalcohols by (TBA)4PFeW11O39·3H2O-catalyzed azidolysis of epoxides with NaN3. Catal. Lett 113, 120–123 (2007)CrossRefGoogle Scholar
  51. 51.
    B. Das, V.S. Reddy, M. Krishnaiah, Y.K. Rao, Highly regio- and stereoselective ring-opening of epoxides and aziridines with sodium azide using ammonium-12-molybdophosphate. J. Mol. Catal. A Chem 270, 89–92 (2007)CrossRefGoogle Scholar
  52. 52.
    F. Ebrahimzadeh, R. Rooydell, Poly(N-bromoacrylamide) as highly efficient, regioselective and recyclable catalyst for preparation of β-azidoalcohols, β-cyanoalcohols, β-nitroalcohols and β-nitratoalcohols from epoxides under aqueous conditions. Der Chem. Sin. 3, 1146–1152 (2012)Google Scholar
  53. 53.
    J.S. Yadav, B.V.S. Reddy, B. Jyothirmai, M.S.R. Murty, Ionic liquids/H2O systems for the reaction of epoxides with NaN3: a new protocol for the synthesis of 2-azidoalcohols. Tetrahedron Lett. 46, 6559–6562 (2005)CrossRefGoogle Scholar
  54. 54.
    A.A. Chaugule, A.H. Tamboli, F.A. Sheikh, W.J. Chung, H. Kim, Glycerol functionalized imidazolium tri-cationic room temperature ionic liquids: synthesis, properties and catalytic performance for 2-azidoalcohol synthesis from epoxide. J. Mol. Liq. 208, 314–321 (2015)CrossRefGoogle Scholar
  55. 55.
    A.R. Kiasat, M. Fallah-Mehrjardi, An efficient catalyst-free ring opening of epoxides in PEG-300: a versatile method for the synthesis of vicinal azidoalcohols. J. Iran. Chem. Soc. 6, 542–546 (2009)CrossRefGoogle Scholar
  56. 56.
    A.A. Newman, Chemistry and biochemistry of thiocyanic acid and its derivatives (Academic, New York, 1975)Google Scholar
  57. 57.
    Y. Gao, K.B. Sharpless, Vicinal diol cyclic sulfates Like epoxides only more reactive. J. Am. Chem. Soc. 110, 7538–7539 (1988)CrossRefGoogle Scholar
  58. 58.
    E.E. Tamelen, The formation and ring-opening of alkene sulfides. J. Am. Chem. Soc. 73, 3444–3448 (1951)CrossRefGoogle Scholar
  59. 59.
    Y. Tamura, H. Yasuda, N. Gohda, Y. Kita, Reaction of epoxides with triphenylphosphine–thiocyanogen (TPPT): preparation of α-thiocyanatovinyl ketones, vic-dithiocyanates, and vic-dithiocyanatohydrins. J. Chem. Soc. Perkin Trans. 1, 1577–1581 (1981)CrossRefGoogle Scholar
  60. 60.
    B.M. Choudary, S.S. Rani, M.L. Kantam, Selective nucleophilic openings of 2,3-epoxy alcohols catalyzed by Pd(PPh3)4. Synth. Commun 20, 2313–2317 (1990)CrossRefGoogle Scholar
  61. 61.
    C. Najera, J.M. Sansano, β,γ-Efoxy sulfones in organic synthesis. Part 2: preparation of β,γ-bifunctionalized sulfones. Tetrahedron 47, 5193–5202 (1991)CrossRefGoogle Scholar
  62. 62.
    Y. Tanabe, K. Mori, Y. Yoshida, Mild, effective and regioselective ring-opening of oxiranes using several thiosilanes promoted by tetrabutylammonium fluoride as catalyst. J. Chem. Soc. Perkin Trans. 1, 671–676 (1997)CrossRefGoogle Scholar
  63. 63.
    A. Olszewski-ortar, P. Gros, Y. Fort, Selective ring-opening of ω-epoxyalkyl (meth)acrylates. An efficient access to bifunctional monomers. Tetrahedron Lett. 38, 8699–8702 (1997)CrossRefGoogle Scholar
  64. 64.
    N. Iranpoor, G.A. Kohmareh, DDQ catalyses the conversion of epoxides to β-hydroxy thiocyanates with NH4SCN. Phosphorus Sulfur Silicon 152, 135–139 (1999)CrossRefGoogle Scholar
  65. 65.
    J.S. Yadav, B.V.S. Reddy, C.S. Reddy, Selectfluor™: a novel and efficient reagent for the synthesis of β-hydroxy thiocyanates. Tetrahedron Lett. 45, 1291–1293 (2004)CrossRefGoogle Scholar
  66. 66.
    X. Chen, H. Wu, R. Xu, M. Liu, J. Ding, W. Su, Gallium trichloride–promoted highly regioselective ring opening of epoxides with NH4SCN and NaN3 in water. Synth. Commun. 38, 1855–1865 (2008)CrossRefGoogle Scholar
  67. 67.
    B. Tamami, H. Mahdavi, Synthesis of thiocyanohydrins from epoxides using quaternized amino functionalized cross-linked polyacrylamide as a new solid-liquid phase-transfer catalyst. Tetrahedron Lett. 43, 6225–6228 (2002)CrossRefGoogle Scholar
  68. 68.
    A.R. Kiasat, R. Mirzajani, H. Shalbaf, T. Tabatabaei, Nuclephilic ring opening of epoxides promoted by multi-site phase-transfer catalyst: an efficient and eco-friendly route to synthesis of β-hydroxy thiocyanate. Chin. Chem. Lett 20, 1025–1029 (2009)CrossRefGoogle Scholar
  69. 69.
    A.R. Kiasat, M. Fallah-Mehrjardi, PEG-SO3H as eco-friendly polymeric catalyst for regioselective ring opening of epoxides using thiocyanate anion in water: an efficient route to synthesis of β-hydroxy thiocyanate. Catal. Commun. 9, 1497–1500 (2008)CrossRefGoogle Scholar
  70. 70.
    A.R. Kiasat, M.F. Mehrjardi, PEG-SO3H as soluble acidic polymeric catalyst for regioselective ring opening of epoxides: a high-efficient synthetic approach to β-hydroxy thiocyanates. Synth. Commun. 38, 2995–3002 (2008)CrossRefGoogle Scholar
  71. 71.
    H. Sharghi, M.A. Nasseri, K. Niknam, Phenol-containing macrocyclic diamides as new catalysts in the highly regioselective conversion of epoxides to β-hydroxy thiocyanates. J. Org. Chem. 66, 7287–7293 (2001)CrossRefPubMedGoogle Scholar
  72. 72.
    K. Niknam, Conversion of epoxides into 2-hydroxyethyl thiocyanates with NH4SCN in the presense of 2,6-bis[2-(o-amino phenoxy)methyl-4-bromo-1-methoxybenzene (BABMB) as catalyst. Phosphorus Sulfur Silicon 179, 499–506 (2004)CrossRefGoogle Scholar
  73. 73.
    H. Sharghi, M.A. Nasseri, A. Hasani Nejad, Efficient synthesis of β-hydroxy thiocyanates from epoxides and ammonium thiocyanates using tetraarylporphyrins as new catalysts. J. Mol. Catal. A Chem 206, 53–57 (2003)CrossRefGoogle Scholar
  74. 74.
    H. Sharghi, A. Hasani Nejad, Dichloro (5,10,15,20-tetraphenylporphyrin) phosphorus(V) chloride as a new catalyst for conversion of 1,2-epoxyethanes to 2-hydroxyethyl thiocyanates with ammonium thiocyanate. Phosphorus Sulfur Silicon 179, 2297–2305 (2004)CrossRefGoogle Scholar
  75. 75.
    H. Sharghi, A. Hasani Nejad, M.A. Nasseri, Metalloporphyrins as new catalysts in the highly regioselective conversion of epoxides to halohydrins with molecular halogen. New J. Chem 28, 946–951 (2004)CrossRefGoogle Scholar
  76. 76.
    A.R. Kiasat, M. Zayadi, M. Fallah-Mehrjardi, Regioselective ring opening of epoxides using NH4SCN/silica sulfuric acid: an efficient approach for the synthesis of β-hydroxy thiocyanate under solvent-free conditions. Chin. Chem. Lett 19, 665–668 (2008)CrossRefGoogle Scholar
  77. 77.
    A.R. Kiasat, M. Fallah-mehrjardi, Dowex as reusable acidic polymeric catalyst in the efficient and regioselective conversion of epoxides into b-hydroxy thiocyanates under solvent free conditions. J. Chin. Chem. Soc. 55, 1119–1124 (2008)CrossRefGoogle Scholar
  78. 78.
    A.R. Kiasat, M. Fallah-Mehrjardi, B(HSO4)3: a novel and efficient solid acid catalyst for the regioselective conversion of epoxides to thiocyanohydrins under solvent-free conditions. J. Braz. Chem. Soc. 19, 1595–1599 (2008)CrossRefGoogle Scholar
  79. 79.
    A.R. Kiasat, A. Mouradzadegun, S. Elahi, M. Fallah-Mehrjardi, Al(HSO4)3/silica gel as a novel catalytic system for the ring opening of epoxides with thiocyanate anion under solvent-free conditions. Chin. Chem. Lett 21, 146–150 (2010)CrossRefGoogle Scholar
  80. 80.
    A.R. Kiasat, M. Fallah-Mehrjardi, Melamine sulfonic acid: a recoverable catalyst for the ecofriendly synthesis of thiocyanohydrins under solvent-free conditions. Synth. Commun. 40, 1551–1558 (2010)CrossRefGoogle Scholar
  81. 81.
    B. Mokhtari, R. Azadi, S. Rahmani-Nezhad, Application of N-thiocyanatosuccinimide as a reagent for the facile conversion of epoxides into thiocyanohydrines. Chin. Chem. Lett. 22, 21–24 (2011)CrossRefGoogle Scholar
  82. 82.
    R. Azadi, B. Mokhtari, H. Oghabi, Remarkably fast and mild solvent-free conversion of epoxides into thiocyanohydrins using Mukaiyama reagent. Phosphorus Sulfur Silicon 187, 1377–1382 (2012)CrossRefGoogle Scholar
  83. 83.
    F. Fulop, I. Huber, G. Bernath, H. Honig, P. Seufer-Wasserthal, Trans-2-cyanocycloalkanols: versatile synthons for alicyclic cis- and trans-1,3-amino alcohols. Synthesis, 43–46 (1991)Google Scholar
  84. 84.
    W. Nagata, M. Yoshioka, T. Okumura, Cleavage of epoxides with hydrogen cyanide and triethylaluminium and with diethylaluminium cyanide. J. Chem. Soc., 2365–2377 (1970)Google Scholar
  85. 85.
    A.E. Vougioukas, H.B. Kagan, Lanthanides as lewis-acid catalysts in aldol addition, cyanohydrin-forming and oxirane ring-opening reactions. Tetrahedron Lett. 28, 5513–5516 (1987)CrossRefGoogle Scholar
  86. 86.
    S. Matsubara, H. Onishi, K. Utimoto, Reaction of cyanotrimethylsilane with oxiranes under Yb(CN)3 catalysis. Tetrahedron Lett. 31, 6209–6212 (1990)CrossRefGoogle Scholar
  87. 87.
    M. Chini, P. Crotti, L. Favero, F. Macchia, Easy direct stereo- and regioselective formation of β-hydroxy nitriles by reaction of 1,2-epoxides with potassium cyanide in the presence of metal salts. Tetrahedron Lett. 32, 4775–4778 (1991)CrossRefGoogle Scholar
  88. 88.
    J.A. Ciaccio, C. Stanescu, J. Bontemps, Facile conversion of epoxides to β-hydroxy nitriles under anhydrous conditions with lithium cyanide. Tetrahedron Lett. 33, 1431–1434 (1992)CrossRefGoogle Scholar
  89. 89.
    A. Tsuruoka, S. Negi, M. Yanagisawa, K. Nara, T. Naito, Practical oxirane ring-opening with in situ prepared LiCN. synthesis of (2S,3R)-3-(2,4-difluorophenyl)-3-hydroxy-2-methyl-4-(1H-1,2,4-triazol-1-yl)-1-butanenitrile. Synth. Commun. 27, 3547–3557 (1997)CrossRefGoogle Scholar
  90. 90.
    J.A. Ciaccio, M. Smrtka, W.A. Maio, D. Rucando, Synthesis of β-hydroxy nitriles and 1,3-amino alcohols from epoxides using acetone cyanohydrin as a LiCN precursor. Tetrahedron Lett. 45, 7201–7204 (2004)CrossRefGoogle Scholar
  91. 91.
    D. Mitchell, T.M. Koenig, Regiospecific opening of 1,2-expoxides with acetone cyanohydrin under mildly basic conditions. Tetrahedron Lett. 33, 3281–3284 (1992)CrossRefGoogle Scholar
  92. 92.
    B. Tamami, N. Iranpoor, R. Rezaei, Highly regioselective conversion of epoxides to β-hydroxy nitriles with cyanide exchange resin. Synth. Commun. 33, 3153–3157 (2003)CrossRefGoogle Scholar
  93. 93.
    A.R. Kiasat, N. Ayashi, M. Fallah-Mehrjardi, Silica-bound 3-{2-[poly(ethylene glycol)ethyl}-substituted 1-methyl-1H-imidazol-3-ium bromide: a recoverable phase-transfer catalyst for smooth and regioselective conversion of oxiranes to β-hydroxynitriles in water. Helv. Chim. Acta 96, 275–279 (2013)CrossRefGoogle Scholar
  94. 94.
    A.R. Kiasat, S. Nazari, J. Davarpanah, Facile synthesis of an organic-inorganic nanocomposite, PEG-silica, by sol-gel method; its characterization and application as an efficient catalyst in regioselective nucleophilic ring opening of epoxides: preparation of β-azido alcohols and β-cyanohydrins. C. R. Chim. 17, 124–130 (2014)CrossRefGoogle Scholar
  95. 95.
    S. Yousefi, A.R. Kiasat, MCM-41 bound dibenzo-18-crown-6 ether: a recoverable phase-transfer nano catalyst for smooth and regioselective conversion of oxiranes to β-azidohydrins and β-cyanohydrins in water. RSC Adv. 5, 92387–92393 (2015)CrossRefGoogle Scholar
  96. 96.
    G. Li, H. Chang, K.B. Sharpless, Catalytic asymmetric aminohydroxylation (AA) of olefins. Angew. Chem. Int. Ed. Engl. 35, 451–454 (1996)CrossRefGoogle Scholar
  97. 97.
    D.J. Ager, I. Prakash, D.R. Schaad, 1,2-Amino alcohols and their heterocyclic derivatives as chiral auxiliaries in asymmetric synthesis. Chem. Rev. 96, 835–876 (1996)CrossRefPubMedGoogle Scholar
  98. 98.
    C.W. Johannes, M.S. Visser, G.S. Weatherhead, A.H. Hoveyda, Zr-catalyzed kinetic resolution of allylic ethers and Mo-catalyzed chromene formation in synthesis enantioselective total synthesis of the antihypertensive agent (S,R,R,R)-nebivolol. J. Am. Chem. Soc. 120, 8340–8347 (1998)CrossRefGoogle Scholar
  99. 99.
    P. O’Brien, Sharpless asymmetric aminohydroxylation: scope, limitations, and use in synthesis. Angew. Chem. Int. Ed. Engl. 38, 326–329 (1999)CrossRefPubMedGoogle Scholar
  100. 100.
    E.J. Corey, F. Zhang, re- and si-face-selective nitroaldol reactions catalyzed by a rigid chiral quaternary ammonium salt: a highly stereoselective synthesis of the HIV protease inhibitor amprenavir (Vertex 478). Angew. Chem. Int. Ed. Engl. 38, 1931–1934 (1999)CrossRefGoogle Scholar
  101. 101.
    L.E. Overman, L.A. Flippin, Facile aminolysis of epoxides with diethylaluminum amides. Tetrahedron Lett. 22, 195–198 (1981)CrossRefGoogle Scholar
  102. 102.
    A. Papini, A. Ricci, M. Taddei, Regiospecific conversion of oxiranes, oxetanes, and lactones into difunctional nitrogen compounds. J. Chem. Soc. Perkin Trans. 1, 2261–2265 (1984)CrossRefGoogle Scholar
  103. 103.
    M.C. Carre, J.P. Houmounou, P. Caubere, A convenient preparation of β-amino alcohols from epoxides and halomagnesium alkylamides. Tetrahedron Lett. 26, 3107–3110 (1985)CrossRefGoogle Scholar
  104. 104.
    J. Yamada, M. Yumoto, Y. Yamamoto, Aminolead compounds as a new reagent for regioselective ring-opening of epoxides. Tetrahedron Lett. 30, 4255–4258 (1989)CrossRefGoogle Scholar
  105. 105.
    R. Otoski, E. Salaski, Inexpensive reagents for the synthesis of amides from esters and for regioselective opening of epoxides. J. Org. Chem. 57, 5831–5834 (1992)CrossRefGoogle Scholar
  106. 106.
    Y. Yamamoto, M. Meguro, N. Tsukada, H. Nemoto, N. Sadayori, J. Gerald, H. Nakamura, Regio- and stereo-selective ring opening of epoxides with amide cuprate reagents. J. Chem. Soc. Chem. Commun., 1201–1203 (1993)Google Scholar
  107. 107.
    C.E. Harris, G.B. Fisher, D. Beardsley, L. Lee, C.T. Goralski, L.W. Nicholson, B. Singaram, Boranes in synthesis. 6. A new synthesis of .beta.-amino alcohols from epoxides. Use of lithium amides and aminoborane catalysts to synthesize .beta.-amino alcohols from terminal and internal epoxides in high yield. J. Org. Chem. 59, 7746–7751 (1994)CrossRefGoogle Scholar
  108. 108.
    G. Sekar, V.K. Singh, An efficient method for cleavage of epoxides with aromatic amines. J. Org. Chem. 64, 287–289 (1999)CrossRefPubMedGoogle Scholar
  109. 109.
    I. Cepanec, M. Litvic, H. Mikuldas, A. Bartolincic, V. Vinkovic, Calcium trifluoromethanesulfonate-catalysed aminolysis of epoxides. Tetrahedron 59, 2435–2439 (2003)CrossRefGoogle Scholar
  110. 110.
    D.B.G. Williams, M. Lawton, Aluminium triflate: an efficient recyclable Lewis acid catalyst for the aminolysis of epoxides. Tetrahedron Lett. 47, 6557–6560 (2006)CrossRefGoogle Scholar
  111. 111.
    N.R. Swamy, G. Kondaji, K. Nagaiah, Bi3+ catalyzed regioselective ring opening of epoxides with aromatic amines. Synth. Commun. 32, 2307–2312 (2002)CrossRefGoogle Scholar
  112. 112.
    H.F. Lu, L.L. Sun, W.J. Le, F.F. Yang, J.T. Zhou, Y.H. Gao, Efficient solvent-free aminolysis of epoxides under (C4H12N2)2[BiCl6Cl·H2O catalysis. Tetrahedron Lett. 53, 4267–4272 (2012)CrossRefGoogle Scholar
  113. 113.
    F. Mohsenzadeh, K. Aghapoor, H.R. Darabi, M.R. Jalali, M.R. Halvagar, Greener aminolysis of epoxides on BiCl3/SiO2. C. R. Chim. 19, 978–985 (2016)CrossRefGoogle Scholar
  114. 114.
    L.D. Pachon, P. Gamez, J.J.M. Brussel, J. Reedijk, Zinc-catalyzed aminolysis of epoxides. Tetrahedron Lett. 44, 6025–6027 (2003)CrossRefGoogle Scholar
  115. 115.
    J.R. Rodriguez, A. Navarro, Opening of epoxides with aromatic amines promoted by indium tribromide: a mild and efficient method for the synthesis of β-amino alcohols. Tetrahedron Lett. 45, 7495–7498 (2004)CrossRefGoogle Scholar
  116. 116.
    F. Carree, R. Gil, J. Collin, Samarium iodides catalyzed meso-epoxides ring opening by aromatic amines. Tetrahedron Lett. 45, 7749–7751 (2004)CrossRefGoogle Scholar
  117. 117.
    N.R. Swamy, T.V. Goud, S.M. Reddy, P. Krishnaiah, Y. Venkateswarlu, Zirconium(IV) chloride catalyzed ring opening of epoxides with aromatic amines. Synth. Commun. 34, 727–734 (2004)CrossRefGoogle Scholar
  118. 118.
    M.M. Mojtahed, M.S. Abaee, V. Hamidi, Efficient solvent-free aminolysis of epoxides and oxetanes under. Catal. Commun. 8, 1671–1674 (2007)CrossRefGoogle Scholar
  119. 119.
    K.S. Babu, B.C. Raju, S.P. Kumar, S.G. Mallur, S.V. Reddy, J.M. Rao, Tungstophosphoric acid (H3PW12O40)-catalyzed regioselective ring opening of epoxides with amines. Synth. Commun. 35, 879–885 (2005)CrossRefGoogle Scholar
  120. 120.
    A. Kamal, B.R. Prasad, A.M. Reddy, M.N.A. Khan, Sulfamic acid as an efficient and recyclable catalyst for the ring opening of epoxides with amines and anilines: an easy synthesis of β-amino alcohols under solvent-free conditions. Catal. Commun. 8, 1876–1880 (2007)CrossRefGoogle Scholar
  121. 121.
    A.K. Shah, M. Kumar, S.H.R. Abdi, R.I. Kureshy, N.H. Khan, H.C. Bajaj, Solvent-free aminolysis of aliphatic and aryloxy epoxides with sulfated zirconia as solid acid catalyst. Appl. Catal. A Gen. 486, 105–114 (2014)CrossRefGoogle Scholar
  122. 122.
    S.S. Shinde, M.S. Said, T.B. Surwase, P. Kumar, Mild regiospecific alcoholysis and aminolysis of epoxides catalyzed by zirconium(IV) oxynitrate. Tetrahedron Lett. 56, 5916–5919 (2015)CrossRefGoogle Scholar
  123. 123.
    R.V. Yarapathy, S. Mekala, B.V. Rao, S. Tammishetti, Polymer supported copper sulphate promoted aminolysis of epoxides with aromatic amines. Catal. Commun. 7, 466–471 (2006)CrossRefGoogle Scholar
  124. 124.
    J.K. Satyarthi, L. Saikia, D. Srinivas, P. Ratnasamy, Regio- and stereoselective synthesis of β-amino alcohols over titanosilicate molecular sieves. Appl. Catal. A Gen. 330, 145–151 (2007)CrossRefGoogle Scholar
  125. 125.
    M.W.C. Robinson, D.A. Timms, S.M. Williams, A.E. Graham, A mild and efficient synthesis of β-amino alcohols from epoxides using a mesoporous aluminosilicate catalyst. Tetrahedron Lett. 48, 6249–6251 (2007)CrossRefGoogle Scholar
  126. 126.
    M.W.C. Robinson, A.M. Davies, I. Mabbett, T.E. Davies, D.C. Apperley, S.H. Taylor, A.E. Graham, Synthesis of nanoporous aluminosilicate materials and their application as highly selective heterogeneous catalysts for the synthesis of β-amino alcohols. J. Mol. Catal. A. Chem. 329, 57–63 (2010)CrossRefGoogle Scholar
  127. 127.
    M.S. Abaee, V. Hamidi, M.M. Mojtahedi, Ultrasound promoted aminolysis of epoxides in aqueous media: a rapid procedure with no pH adjustment for additive-free synthesis of β-aminoalcohols. Ultrason. Sonochem. 15, 823–827 (2008)CrossRefPubMedGoogle Scholar
  128. 128.
    S.S. Chimni, N. Bala, V.A. Dixit, P.V. Bharatam, Thiourea catalyzed aminolysis of epoxides under solvent free conditions. Electronic control of regioselective ring opening. Tetrahedron 66, 3042–3049 (2010)CrossRefGoogle Scholar
  129. 129.
    V.T. Kamble, N.S. Joshi, Synthesis of β-amino alcohols by ring opening of epoxides with amines catalyzed by cyanuric chloride under mild and solvent-free conditions. Green Chem. Lett. Rev. 3, 275–281 (2010)CrossRefGoogle Scholar
  130. 130.
    A. Murugan, V. Krishna, S. Bachu, M.R. Reddy, V. Torlikonda, S.G. Manjunatha, S. Ramasubramanian, S. Nambiar, G.P. Howell, J. Withnall, Regio-selective synthesis of 1,2-aminoalcohols from epoxides and chlorohydrins. Tetrahedron Lett. 53, 5739–5741 (2012)CrossRefGoogle Scholar
  131. 131.
    N. Aramesh, B. Yadollahi, V. Mirkhani, Fe(III) substituted Wells–Dawson type polyoxometalate: an efficient catalyst for ring opening of epoxides with aromatic amines. Inorg. Chem. Commun. 28, 37–40 (2013)CrossRefGoogle Scholar
  132. 132.
    C. Wang, H. Yamamoto, Nickel-catalyzed regio- and enantioselective aminolysis of 3,4-epoxy alcohols. J. Am. Chem. Soc. 137, 4308–4311 (2015)CrossRefPubMedGoogle Scholar
  133. 133.
    M.A. Zolfigol, A.R. Moosavi-Zare, M. Zarei, A. Zare, E. Noroozizadeh, R. Karamian, M. Asadbegy, Synthesis of β-phthalimido-alcohols via regioselective ring-opening of epoxide by using reusable basic magnetic nano particles and their biological investigation. RSC Adv. 6, 62460–62466 (2016)CrossRefGoogle Scholar
  134. 134.
    N. Ono, The nitro group in organic synthesis (Wiley, New York, 2001)CrossRefGoogle Scholar
  135. 135.
    D.J. Ager, I. Prakash, D.R. Schaad, 1,2-Amino alcohols and their heterocyclic derivatives as chiral auxiliaries in asymmetric synthesis. Chem. Rev. 96, 835–875 (1996)CrossRefPubMedGoogle Scholar
  136. 136.
    G.A. Jacobs, J.A. Tino, R. Zahler, Synthesis of SQ-32,829, a new nucleoside antiviral agent. Tetrahedron Lett. 30, 6955–6958 (1989)CrossRefGoogle Scholar
  137. 137.
    D.M. Coe, P.L. Myers, D.M. Parry, S.M. Roberts, R. Storerb, Synthesis of compounds active against HIV. Part 2. Preparation of some 2′,3′-dideoxy-6′-fluorocarbocyclic nucleosides. J. Chem. Soc. Chem. Commun. 151–153 (1990)Google Scholar
  138. 138.
    T. Suami, K. Tadano, A. Suga, Y. Ueno, An alternative synthesis of acosamine and ristosamine. J. Carbohydr. Chem. 3, 429–441 (1984)CrossRefGoogle Scholar
  139. 139.
    G. Hasnaoui, J.H.L. Spelberg, E. De Vries, L. Tang, B. Hauer, D.B. Janssen, Nitrite-mediated hydrolysis of epoxides catalyzed by halohydrin dehalogenase from Agrobacterium radiobacter AD1: a new tool for the kinetic resolution of epoxides. Tetrahedron Asymmetry 16, 1685–1692 (2005)CrossRefGoogle Scholar
  140. 140.
    B. Kalita, N.C. Barua, M. Bezbarua, G. Bez, Synthesis of 2-nitroalcohols by regioselective ring opening of epoxides with MgSO4/MeOH/NaNO2 system: a short synthesis of immunosuppressive agent FTY-720. Synlett, 1411–1414 (2001)Google Scholar
  141. 141.
    J.C. Borah, S. Gogoi, J. Boruwa, N.C. Barua, LaCl3·7H2O-Promoted regioselective ring opening of epoxides using NaNO2 in ether–water system: a facile synthesis of 2-nitroalcohols. Synth. Commun. 35, 873–878 (2005)CrossRefGoogle Scholar
  142. 142.
    H. Mahdavi, B. Tamami, Synthesis of 2-nitroalcohols from epoxides using quaternized amino functionalized cross-linked polyacrylamide as a new polymeric phase transfer catalyst. React. Funct. Polym. 64, 179–185 (2005)CrossRefGoogle Scholar
  143. 143.
    R. Tamura, A. Kaminura, N. Ono, Displacement of aliphatic nitro groups by carbon and heteroatom nucleophiles. Synthesis, 423–434 (1991)Google Scholar
  144. 144.
    N.S. Marans, R.P. Zelinski, 2-Nitratoethyl esters of acrylic, crotonic and methacrylic acids. J. Am. Chem. Soc. 72, 5330–5331 (1950)CrossRefGoogle Scholar
  145. 145.
    L. Nichols, B. Magnusson, J.D. Ingham, Synthesis of nitric esters by the addition of nitric acid to the ethylene oxide ring. J. Am. Chem. Soc. 75, 4255–4258 (1953)CrossRefGoogle Scholar
  146. 146.
    E. Mincione, F. Lanciano, Thallium nitrate as a reagent for the conversion of epoxides into α-hydroxynitrate esters and for the cleavage of aliphatic ethers. Tetrahedron Lett. 21, 1149–1150 (1980)CrossRefGoogle Scholar
  147. 147.
    N. Iranpoor, P. Salehi, Ceric ammonium nitrate: a mild and efficient reagent for conversion of epoxides to β-nitrato alcohols. Tetrahedron 51, 909–912 (1995)CrossRefGoogle Scholar
  148. 148.
    J.R. Hanson, T. Mickael, C. Uyanik, F. Viel, The stereochemistry of the cleavage of steroidal epoxides by ceric ammonium nitrate. J. Chem. Res., 118–119 (1998)Google Scholar
  149. 149.
    N. Iranpoor, T. Taherain, Z. Movahedi, FeCl3·6H2O supported on SiO2 catalysed ring-opening of epoxides with alcohols, acetic acid, water, chloride, bromide and nitrate ions. Synthesis, 1473–1476 (1996)Google Scholar
  150. 150.
    Z. Liu, R. Li, D. Yang, L. Wu, Ring opening of 2,3-epoxy phenyl ketones upon reaction with nitric oxide. Tetrahedron Lett. 45, 1565–1566 (2004)CrossRefGoogle Scholar
  151. 151.
    Y. Fan, X. Shang, Z. Liu, L. Wu, Regio- and diastereoselective ring-opening reaction of epoxides with nitric oxide. Synth. Commun. 36, 3149–3152 (2006)CrossRefGoogle Scholar
  152. 152.
    W. Wu, Q. Liu, Y. Shen, R. Li, L. Wu, Highly stereoselective syn-ring opening of enantiopure epoxides with nitric oxide. Tetrahedron Lett. 48, 1653–1656 (2007)CrossRefGoogle Scholar
  153. 153.
    T.K. Chakraborty, A.K. Chattopadhyay, R. Samanta, R.S. Ampapathi, Stereoselective construction of quaternary chiral centers using Ti(III)-mediated opening of 2,3-epoxy alcohols: studies directed toward the synthesis of penifulvins. Tetrahedron Lett. 51, 4425–4428 (2010)CrossRefGoogle Scholar
  154. 154.
    G.H. Posner, D.Z. Rogers, C.M. Kinzig, G.M. Gurria, Organic reactions at alumina surfaces. Displacement reactions effected by alcohols, thiols, and acetic acid on dehydrated alumina. Tetrahedron Lett. 16, 3597–3600 (1975)CrossRefGoogle Scholar
  155. 155.
    G.A. Olah, A.P. Fung, D. Meidar, Nafion-H-catalyzed hydration and methanolysis of epoxides. Synthesis, 280–282 (1981)Google Scholar
  156. 156.
    J. Otera, Y. Ycshinaga, K. Hirakawa, Highly regioselective ring opening of epoxides with alcohols catalyzed by organotin phosphate condensates. Tetrahedron Lett. 26, 3219–3222 (1985)CrossRefGoogle Scholar
  157. 157.
    N. Iranpoor, I. Mohammadpour Baltork, 2,3-Dichloro-5,6-dicyano-p-benzoquinone, catalyst for alcoholysis of epoxides. Tetrahedron Lett. 31, 735–738 (1990)CrossRefGoogle Scholar
  158. 158.
    N. Iranpoor, I. Mohammadpoor-Baltork, Mild, efficient and selective opening of epoxides with alcohols catalyzed by ceric(IV) ammonium nitrate. Synth. Commun. 20, 2789–2797 (1990)CrossRefGoogle Scholar
  159. 159.
    N. Iranpoor, I. Mohammadpour Baltork, F. shiriny Zardaloo, Ceric ammonium nitrate, an efficient catalyst for mild and selective opening of epoxides in the presence of water thiols and acetic acid. Tetrahedron 47, 9861–9866 (1991)CrossRefGoogle Scholar
  160. 160.
    Y. Masaki, T. Miura, M. Ochiai, Alcoholysis of epoxides catalyzed by tetracyanoethylene. Synlett, 847–849 (1993)Google Scholar
  161. 161.
    N. Iranpoor, F. Shiriny Zardaloo, Tris[trinitrato Ce(IV)paraperiodate, an efficient heterogeneous catalyst for alcoholysis, acetolysis, and hydrolysis of epoxides. Synth. Commun. 24, 1959–1969 (1994)CrossRefGoogle Scholar
  162. 162.
    B.M. Choudary, Y. Sudha, Fe3+-Montmorillonite: an efficient heterogeneous catalyst for highly regioselective alcoholysis of epoxides. Synth. Commun. 26, 2989–2992 (1996)CrossRefGoogle Scholar
  163. 163.
    P. Salehi, B. Seddighi, M. Irandoost, F.K. Behbahani, Ferric perchlorate: an efficient reagent for regio- and stereoselective alcoholysis and hydrolysis of epoxides. Synth. Commun. 30, 2967–2973 (2000)CrossRefGoogle Scholar
  164. 164.
    T. Weil, M. Kotke, C.M. Kleiner, P.R. Schreiner, Cooperative Brönsted acid-type organocatalysis: alcoholysis of styrene oxides. Org. Lett. 10, 1513–1516 (2008)CrossRefPubMedGoogle Scholar
  165. 165.
    S.S. Kahandal, S.R. Kale, S.T. Disale, R.V. Jayaram, Sulphated yttria–zirconia as a regioselective catalyst system for the alcoholysis of epoxides. Catal. Sci. Technol 2, 1493–1499 (2012)CrossRefGoogle Scholar
  166. 166.
    R. Kore, R. Srivastava, B. Satpati, Highly efficient nanocrystalline zirconosilicate catalysts for the aminolysis, alcoholysis, and hydroamination reactions. ACS Catal. 3, 2891–2904 (2013)CrossRefGoogle Scholar
  167. 167.
    G.D. Yadav, S. Singh, Ring opening of epoxides with alcohols using Fe(Cp)2BF4 as catalyst. Tetrahedron Lett. 55, 3979–3983 (2014)CrossRefGoogle Scholar
  168. 168.
    S.M. Bruno, A.C. Gomes, T.S.M. Oliveira, M.M. Antunes, A.D. Lopes, A. Valente, I.S. Gonçalves, M. Pillinger, Catalytic alcoholysis of epoxides using metal-free cucurbituril-based solids. Org. Biomol. Chem. 14, 3873–3877 (2016)CrossRefPubMedGoogle Scholar
  169. 169.
    F.K. Olia, S. Sayyahi, N. Taheri, An Fe3O4 nanoparticle-supported Mn(II)-azo Schiff complex acts as a heterogeneous catalyst in alcoholysis of epoxides. C. R. Chim. 20, 370–376 (2017)CrossRefGoogle Scholar
  170. 170.
    D.B.G. Williams, M. Lawton, Aluminium triflate: a remarkable Lewis acid catalyst for the ring opening of epoxides by alcohols. Org. Biomol. Chem. 3, 3269–3272 (2005)CrossRefPubMedGoogle Scholar
  171. 171.
    C. Schneider, A.R. Sreekanth, E. Mai, Scandium-bipyridine-catalyzed enantioselective addition of alcohols and amines to meso-epoxides. Angew. Chem. Int. Ed. 43, 5691–5694 (2004)CrossRefGoogle Scholar
  172. 172.
    A. Tschop, A. Marx, A.R. Sreekanth, C. Schneider, Scandium-bipyridine-catalyzed, enantioselective alcoholysis of meso-epoxides. Eur. J. Org. Chem., 2318–2327 (2007)Google Scholar
  173. 173.
    M. Moghadam, I. Mohammadpoor-Baltork, S. Tangestaninejad, V. Mirkhani, L. Shariati, M. Babaghanbari, M. Zarea, Zirconyl triflate, [ZrO(OTf)2, as a new and highly efficient catalyst for ring-opening of epoxides. J. Iran. Chem. Soc. 6, 789–799 (2009)CrossRefGoogle Scholar
  174. 174.
    D. Jiang, T. Mallat, F. Krumeich, A. Baiker, Copper-based metal-organic framework for the facile ring-opening of epoxides. J. Catal. 257, 390–395 (2008)CrossRefGoogle Scholar
  175. 175.
    A. Dhakshinamoorthy, M. Alvaro, H. Garcia, Metal-organic frameworks as efficient heterogeneous catalysts for the regioselective ring-opening of epoxides. Chem. Eur. J. 16, 8530–8536 (2010)CrossRefPubMedGoogle Scholar
  176. 176.
    Z. Xue, J. Jiang, M.-G. Ma, M.-F. Li, T. Mu, Gadolinium-based metal–organic framework as an efficient and heterogeneous catalyst to activate epoxides for cycloaddition of CO2 and alcoholysis. ACS Sustain. Chem. Eng 5, 2623–2631 (2017)CrossRefGoogle Scholar
  177. 177.
    P. Salehi, M. Dabiri, A. Zolfigol, A.B. Fard, Silica sulfuric acid; an efficient and reusable catalyst for regioselective ring opening of epoxides by alcohols and water. Phosphorus Sulfur Silicon 179, 1113–1121 (2004)CrossRefGoogle Scholar
  178. 178.
    P. Salehi, M.M. Khodaei, M.A. Zolfigol, A. Keyvan, Magnesium hydrogensulfate: a cheap and efficient catalyst for the conversion of epoxides into β-alkoxy alcohols, vicinal-diols, and thiiranes. Synth. Commun. 33, 3041–3048 (2003)CrossRefGoogle Scholar
  179. 179.
    A. Dhakshinamoorthy, M. Alvaro, P. Concepción, V. Fornés, H. Garcia, Graphene oxide as an acid catalyst for the room temperature ring opening of epoxides. Chem. Commun. 48, 5443–5445 (2012)CrossRefGoogle Scholar
  180. 180.
    M. Mirza-Aghayan, M. Alizadeh, M. Molaee Tavana, R. Boukherroub, Graphite oxide: a simple and efficient solid acid catalyst for the ring-opening of epoxides by alcohols. Tetrahedron Lett. 55, 6694–6697 (2014)CrossRefGoogle Scholar
  181. 181.
    Y.-X. Zhou, Y.-Z. Chen, Y. Hu, G. Huang, S.-H. Yu, H.-L. Jiang, MIL-101-SO3H: a highly efficient Brönsted acid catalyst for heterogeneous alcoholysis of epoxides under ambient conditions. Chem. Eur. J. 20, 14976–14980 (2014)CrossRefPubMedGoogle Scholar
  182. 182.
    C. Moberg, L. Rákos, L. Tottie, Stereospecific Lewis acid catalyzed methanolysis of styrene oxide. Tetrahedron Lett. 33, 2191–2194 (1992)CrossRefGoogle Scholar
  183. 183.
    N. Iranpoor, P. Salehi, Highly efficient, regio- and stereoselective alcoholysis of epoxides catalyzed with iron(III) chloride. Synthesis, 1152–1154 (1994)Google Scholar
  184. 184.
    N. Iranpoor, T. Tarrian, Z. Movahedi, FeCl3·6H2O Supported on SiO2 catalysed ring-opening of epoxides with alcohols, acetic acid, water, chloride, bromide and nitrate ions. Synthesis, 1473–1476 (1996)Google Scholar
  185. 185.
    N. Iranpoor, H. Adibi, Iron(III) trifluoroacetate as an efficient catalyst for solvolytic and nonsolvolytic nucleophilic ring-opening of epoxides. Bull. Chem. Soc. Jpn. 73, 675–680 (2000)CrossRefGoogle Scholar
  186. 186.
    J. Barluenga, H. Vazquez-Villa, A. Ballesteros, J.M. Gonzalez, Copper(II) tetrafluoroborate catalyzed ring-opening reaction of epoxides with alcohols at room temperature. Org. Lett. 4, 2817–2819 (2002)CrossRefPubMedGoogle Scholar
  187. 187.
    V. Mirkhani, S. Tangestaninejad, B. Yadollahi, L. Alipanah, Efficient regio- and stereoselective ring opening of epoxides with alcohols, acetic acid and water catalyzed by ammonium decatungstocerate(IV). Tetrahedron 59, 8213–8218 (2003)CrossRefGoogle Scholar
  188. 188.
    B.H. Kim, F. Piao, E.J. Lee, J.S. Kim, Y.M. Jun, B.M. Lee, InCl3-catalyzed rergioselective ring-opening reactions of epoxides to β-hydroxyethers. Bull. Korean Chem. Soc. 25, 881–888 (2004)CrossRefGoogle Scholar
  189. 189.
    M. Moghadam, S. Tangestaninejad, V. Mirkhani, R. Shaibani, Rapid and efficient ring opening of epoxides catalyzed by a new electron deficient tin(IV) porphyrin. Tetrahedron 60, 6105–6111 (2004)CrossRefGoogle Scholar
  190. 190.
    M. Moghadam, S. Tangestaninejad, V. Mirkhani, I. Mohammadpoor-Baltork, S.A. Taghavi, High-valent tin(IV) porphyrin, SnIV(TPP)(BF4)2, as an efficient catalyst for the ring-opening of epoxides. Catal. Commun. 8, 2087–2095 (2007)CrossRefGoogle Scholar
  191. 191.
    S. Tangestaninejad, M. Moghadam, V. Mirkhani, B. Yadollahi, S.M.R. Mirmohammadi, Mild and efficient ring opening of epoxides catalyzed by potassium dodecatungstocobaltate(III). Monatsh. Chem. 137, 235–242 (2006)CrossRefGoogle Scholar
  192. 192.
    V.R. Acham, M.K. Dongare, E. Kemnitz, S.B. Umbarkar, An epoxide ring-opening reaction by using sol-gel-synthesized palladium supported on a strontium hydroxyl fluoride catalyst. C. R. Chim. 19, 1237–1246 (2016)CrossRefGoogle Scholar
  193. 193.
    B. Zeynizadeh, M. Gilanizadeh, F.M. Aminzadeh, A highly efficient protocol for regioselective ring-opening of epoxides with alcohols, water, acetic acid, and acetic anhydride catalyzed by SbF3. Phosphorus Sulfur Silicon 191, 1051–1056 (2016)CrossRefGoogle Scholar
  194. 194.
    M.W.C. Robinson, R. Buckle, I. Mabbett, G.M. Grant, A.E. Graham, Mesoporous aluminosilicate promoted alcoholysis of epoxides. Tetrahedron Lett. 48, 4723–4725 (2007)CrossRefGoogle Scholar
  195. 195.
    I. Matos, P.D. Neves, J.E. Castanheiro, E. Perez-mayoral, R. Martin-aranda, C. Duran-valle, J. Vital, A.M. Botelho, I.M. Fonseca, Mesoporous carbon as an efficient catalyst for alcoholysis and aminolysis of epoxides. Appl. Catal. A Gen. 439–440, 24–30 (2012)Google Scholar
  196. 196.
    T. Miura, Y. Masaki, Catalytic activities of dicyanoketene acetals in alcoholysis of epoxides. Chem. Pharm. Bull. 43, 523–525 (1995)CrossRefGoogle Scholar
  197. 197.
    N. Iranpoor, B. Tamami, K. Niknam, Iodine and iodine supported on polyvinylpyrrolidone as catalysts and reagents for alcoholysis, hydrolysis, and acetolysis of epoxides and thiiranes. Can. J. Chem. 75, 1913–1919 (1997)CrossRefGoogle Scholar
  198. 198.
    W. Fenical, Molecular aspects of halogen-based biosynthesis of marine natural products (Plenum Press, New York, 1979)CrossRefGoogle Scholar
  199. 199.
    P.A. Bartlett, Asymmetric Synthesis (Academic, New York, 1984)Google Scholar
  200. 200.
    C.A. Stewart, C.A. VanderWerf, Reaction of propylene oxide with hydrogen halides. J. Am. Chem. Soc. 76, 1259–1264 (1954)CrossRefGoogle Scholar
  201. 201.
    G. Palumbo, C. Ferrari, R. Caputo, A new general synthesis of halohydrins. Tetrahedron Lett. 24, 1307–1310 (1983)CrossRefGoogle Scholar
  202. 202.
    C. Bonini, G. Righi, Regio- and chemoselective synthesis of halohydrins by cleavage of oxiranes with metal halides. Synthesis, 225–238 (1994)Google Scholar
  203. 203.
    J.S. Bajwa, R.C. Anderson, A highly regioselective conversion of epoxides to haloliydrins by lithilim halides. Tetrahedron Lett. 32, 3021–3024 (1991)CrossRefGoogle Scholar
  204. 204.
    H. Kotsuki, T. Shimanouchi, A facile conversion of epoxides to β-halohydrins with silica gel-supported lithium halides. Tetrahedron Lett. 37, 1845–1848 (1996)CrossRefGoogle Scholar
  205. 205.
    H. Kotsuki, T. Shimanouchi, R. Ohshima, S. Fujiwara, Solvent-free organic reactions on silica gel supports. Facile transformation of epoxides to β-halohydrins with lithium halides. Tetrahedron 54, 2709–2722 (1998)CrossRefGoogle Scholar
  206. 206.
    R.D. Dawe, T.F. Molinski, J.V. Turner, Dilithium tetrabromonickelate(II) as a source of soft nucleophilic bromide: reaction with epoxides. Tetrahedron Lett. 25, 2061–2064 (1984)CrossRefGoogle Scholar
  207. 207.
    J.A. Giaccio, K.J. Addess, T.W. Bell, Dilithium tetrachlorocuprate. A reagent for regioselective cleavage of epoxides to chlorohydrins. Tetrahedron Lett. 27, 3697–3700 (1986)CrossRefGoogle Scholar
  208. 208.
    T.W. Bell, J.A. Giaccio, Conversion of epoxides to bromohydrins by B-bromobis(dimethylamino)borane. Tetrahedron Lett. 27, 827–830 (1986)CrossRefGoogle Scholar
  209. 209.
    L.J. Weselinski, M.J. Grillo, M. Tanasova, The practical stereocontrolled synthesis of vicinal halohydrins and haloamines from vinyl epoxides and vinyl aziridines. Tetrahedron Lett. 57, 4477–4479 (2016)CrossRefGoogle Scholar
  210. 210.
    G. Sabitha, R.S. Babu, M. Rajkumar, C.S. Reddy, J.S. Yadav, Highly regioselective ring opening of epoxides and aziridines using (bromodimethyl)sulfonium bromide. Tetrahedron Lett. 42, 3955–3958 (2001)CrossRefGoogle Scholar
  211. 211.
    B. Tamami, H. Mahdavi, Synthesis of halohydrins from epoxides using quaternized amino functionalized cross-linked polyacrylamide as a new solid–liquid phase transfer catalyst. React. Funct. Polym. 51, 7–13 (2002)CrossRefGoogle Scholar
  212. 212.
    T. Wang, W.H. Ji, Z.Y. Xu, B.B. Zeng, An efficient and convenient protocol for highly regioselective cleavage of terminal epoxides to β-halohydrins. Synlett, 1511–1513 (2009)Google Scholar
  213. 213.
    R.M.A. Pinto, J.A.R. Salvador, C. Le Roux, Bismuth(III) salts mediated regioselective ring opening of epoxides: an easy route to halohydrins and β-hydroxy nitrates. Tetrahedron 63, 9221–9228 (2007)CrossRefGoogle Scholar
  214. 214.
    M.I. Konaklieva, M.L. Dahl, E. Turos, Halogenation reactions of epoxides. Tetrahedron Lett. 33, 7093–7096 (1992)CrossRefGoogle Scholar
  215. 215.
    H. Sharghi, A.R. Massah, H. Eshghi, K. Niknam, Crown ethers as new catalysts in the highly regioselective halogenative cleavage of epoxides with elemental halogen. J. Org. Chem. 63, 1455–1461 (1998)CrossRefGoogle Scholar
  216. 216.
    H. Sharghi, H. Naeimi, Schiff-base complexes of Metal(II) as new catalysts in the high-regioselective conversion of epoxides to halo alcoholsby means of elemental halogen. Bull. Chem. Soc. Jpn. 72, 1525–1531 (1999)CrossRefGoogle Scholar
  217. 217.
    H. Sharghi, K. Niknam, M. Pooyan, The halogen-mediated opening of epoxides in the presence of pyridine-containing macrocycles. Tetrahedron 57, 6057–6064 (2001)CrossRefGoogle Scholar
  218. 218.
    K. Niknam, T. Nasehi, Cleavage of epoxides into halohydrins with elemental iodine and bromine in the presence of 2,6-bis[2-(o-aminophenoxy)methyl-4-bromo-1-methoxybenzene (BABMB) as catalyst. Tetrahedron 58, 10259–10261 (2002)CrossRefGoogle Scholar
  219. 219.
    H. Sharghi, Z. Paziraee, K. Niknam, Halogenated cleavage of epoxides into halohydrins in the presence of a series of diamine podands as catalyst with elemental iodine and bromine. Bull. Korean Chem. Soc. 23, 1611–1615 (2002)CrossRefGoogle Scholar
  220. 220.
    M.A. Reddy, K. Surendra, N. Bhanumathi, K.R. Rao, Highly facile biomimetic regioselective ring opening of epoxides to halohydrins in the presence of β-cyclodextrin. Tetrahedron 58, 6003–6008 (2002)CrossRefGoogle Scholar
  221. 221.
    H. Sharghi, M.M. Eskandari, Conversion of epoxides to halohydrins with elemental halogen catalyzed by phenylhydrazine. Tetrahedron 59, 8509–8514 (2003)CrossRefGoogle Scholar
  222. 222.
    D. Landini, A. Maia, C. Pinna, Ring opening reactions of 1,2-epoxides catalyzed by complexes of polyether ligands with metal halides in low polarity solvents. Comparison with heterogeneous systems. Arkivoc, 202–212 (2004)Google Scholar
  223. 223.
    H. Naeimi, M. Moradian, Alumina-supported metal(II) Schiff base complexes as heterogeneous catalysts in the high-regioselective cleavage of epoxides to halohydrins by using elemental halogen. Polyhedron 27, 3639–3645 (2008)CrossRefGoogle Scholar
  224. 224.
    J. Wu, X. Sun, W. Sun, S. Ye, Unexpected highly efficient ring-opening of aziridines or epoxides with iodine promoted by thiophenol. Synlett, 2489–2491 (2006)Google Scholar
  225. 225.
    N. Iranpoor, F. Kazemi, P. Salehi, Highly regio- and stereoselective synthesis of β-halohydrins from epoxides catalyzed with ceric ammonium nitrate. Synth. Commun. 27, 1247–1258 (1997)CrossRefGoogle Scholar
  226. 226.
    B. Das, M. Krishnaiah, K. Venkateswarlu, Highly regioselective ring opening of epoxides and aziridines using (bromodimethyl)sulfonium bromide. Tetrahedron Lett. 47, 4457–4460 (2006)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2018

Authors and Affiliations

  • Mehdi Fallah-Mehrjardi
    • 1
  • Ali Reza Kiasat
    • 2
    • 3
  • Khodabakhsh Niknam
    • 4
  1. 1.Department of ChemistryPayame Noor University (PNU)TehranIran
  2. 2.Department of Chemistry, College of ScienceShahid Chamran University of AhvazAhvazIran
  3. 3.Petroleum Geology and Geochemistry Research Centre, (PGGRC)Shahid Chamran University of AhvazAhvazIran
  4. 4.Department of Chemistry, Faculty of SciencePersian Gulf UniversityBushehrIran

Personalised recommendations