PAMAM dendrimer-enhanced removal of cobalt ions based on multiple-response optimization using response surface methodology

Original Paper
  • 15 Downloads

Abstract

This study introduces poly(amidoamine) PAMAM dendrimers as new macromolecular complexation agents for Co(II) removal in polymer-assisted ultrafiltration (PAUF). A five-level three-factor design of experiments (DOE), central composite design type, and response surface methodology (RSM) were used together to find out the interaction effects and optimize three variables, i.e., initial Co(II) concentration ([Co2+]0), PAMAM dendrimer-to-Co(II) ratio (r), and pH of solution. Multiple-response simultaneous optimization was conducted by using desirability function. The goal of 73.6% overall desirability was attained for the removal efficiency (R) and metal retention capacity (q). The predicted results obtained for the simultaneous optimization are R = 76.78% and q = 392.09 mg/g. The optimum conditions derived via RSM were found to be as follows: [Co2+]0 = 4.14 mg/L, r = 2, and pH = 9.0. Verification experiments (R = 75.73% and q = 387.32 mg/g) confirmed the validity of the predicted model. The DOE–RSM-utilized and desirability function-optimized PAMAM dendrimer-enhanced ultrafiltration (PAMAM-DEUF) process was used for the first time in this study. The results are comparable to those provided by the reference PAUF technique.

Graphical Abstract

Keywords

Polymer-assisted ultrafiltration PAMAM dendrimer Heavy metal removal Cobalt Desirability function Multiple-response optimization 

Notes

Acknowledgements

This research has been supported by Adıyaman University Scientific Research Projects Coordination Department (Project Number: MÜFMAP/2015-0004). There is no conflict of interest. The author is grateful to his wife, Assist. Prof. Dr. Müzeyyen Ertürk, for many helpful discussions.

References

  1. 1.
    R. Solanki, R. Dhankhar, Biochemical changes and adaptive strategies of plants under heavy metal stress. Biologia 66(2), 195–204 (2011).  https://doi.org/10.2478/s11756-011-0005-6 CrossRefGoogle Scholar
  2. 2.
    H.A. Wayland, S.N. Boury, B.P. Chhetri, A. Brandt, M.A. Proskurnin, V.A. Filichkina, V.P. Zharov, A.S. Biris, A. Ghosh, Advanced cellulosic materials for treatment and detection of industrial contaminants in wastewater. Chem Sel 1(15), 4472–4488 (2016).  https://doi.org/10.1002/slct.201600653 Google Scholar
  3. 3.
    A. Tripathi, M.R. Ranjan, Heavy metal removal from wastewater using low cost adsorbents. J. Bioremdiat. Biodegrad. 6(6), 1000315/1000311–1000315/1000315 (2015).  https://doi.org/10.4172/2155-6199.1000315 Google Scholar
  4. 4.
    F. Qin, B. Wen, X.Q. Shan, Y.N. Xie, T. Liu, S.Z. Zhang, S.U. Khan, Mechanisms of competitive adsorption of Pb, Cu, and Cd on peat. Environ. Pollut. 144(2), 669–680 (2006).  https://doi.org/10.1016/j.envpol.2005.12.036 CrossRefGoogle Scholar
  5. 5.
    S.E. Bailey, T.J. Olin, R.M. Bricka, D.D. Adrian, A review of potentially low-cost sorbents for heavy metals. Water Res. 33(11), 2469–2479 (1999).  https://doi.org/10.1016/S0043-1354(98)00475-8 CrossRefGoogle Scholar
  6. 6.
    A. Netzer, D.E. Hughes, Adsorption of copper, lead and cobalt by activated carbon. Water Res. 18(8), 927–933 (1984).  https://doi.org/10.1016/0043-1354(84)90241-0 CrossRefGoogle Scholar
  7. 7.
    C. Gómez-Lahoz, F. García-Herruzo, J.M. Rodríguez-Maroto, J.J. Rodríguez, Cobalt(II) removal from water by chemical reduction with sodium borohydride. Water Res. 27(6), 985–992 (1993).  https://doi.org/10.1016/0043-1354(93)90062-M CrossRefGoogle Scholar
  8. 8.
    WHO, World Health Organization, A compendium of standards for wastewater reuse in the Eastern Mediterranean Region, (World Health Organization Regional Office for the Eastern Mediterranean, Cairo, Egypt; Regional Centre for Environmental Health Activities CEHA, Amman, Jordan, 2006)Google Scholar
  9. 9.
    E.I. Hamilton, The geobiochemistry of cobalt. Sci. Total Environ. 150(1–3), 7–39 (1990).  https://doi.org/10.1016/0048-9697(94)90126-0 Google Scholar
  10. 10.
    A. Kabata-Pendias, H. Pendias, Trace Elements in Soils and Plants (CRC Press, Boca Raton, 1984), pp. 238–245Google Scholar
  11. 11.
    Q. Wang, L. Chen, Y. Sun, Removal of radiocobalt from aqueous solution by oxidized MWCNT. J. Radioanal. Nucl. Chem. 291(3), 787–795 (2012).  https://doi.org/10.1007/s10967-011-1352-z CrossRefGoogle Scholar
  12. 12.
    Y. Huang, L. Chen, H. Wang, Removal of Co(II) from aqueous solution by using hydroxyapatite. J. Radioanal. Nucl. Chem. 291(3), 777–785 (2012).  https://doi.org/10.1007/s10967-011-1351-0 CrossRefGoogle Scholar
  13. 13.
    K. Shang, Y.Z. Yang, J.X. Guo, W.J. Lu, F. Liu, W. Wang, Extraction of cobalt by the AOT microemulsion system. J. Radioanal. Nucl. Chem. 291(3), 629–633 (2012).  https://doi.org/10.1007/s10967-011-1443-x CrossRefGoogle Scholar
  14. 14.
    H. Omar, H. Arida, A. Daifullah, Adsorption of 60Co radionuclides from aqueous solution by raw and modified bentonite. Appl. Clay Sci. 44(1–2), 21–26 (2009).  https://doi.org/10.1016/j.clay.2008.12.013 CrossRefGoogle Scholar
  15. 15.
    J. Oliva, J. De Pablo, J.L. Cortina, J. Cama, C. Ayora, Removal of cadmium, copper, nickel, cobalt and mercury from water by Apatite II™: column experiments. J. Hazard. Mater. 194, 312–323 (2011).  https://doi.org/10.1016/j.jhazmat.2011.07.104 CrossRefGoogle Scholar
  16. 16.
    A. Ahmadpour, M. Tahmasbi, T.R. Bastami, J.A. Besharati, Rapid removal of cobalt ion from aqueous solutions by almond green hull. J. Hazard. Mater. 166(2–3), 925–930 (2009).  https://doi.org/10.1016/j.jhazmat.2008.11.103 CrossRefGoogle Scholar
  17. 17.
    J. Mizera, G. Mizerová, V. Machovič, L. Borecká, Sorption of cesium, cobalt and europium on low-rank coal and chitosan. Water Res. 41(3), 620–626 (2007).  https://doi.org/10.1016/j.watres.2006.11.008 CrossRefGoogle Scholar
  18. 18.
    V.K. Gupta, C.K. Jain, I. Ali, M. Sharma, V.K. Saini, Removal of cadmium and nickel from wastewater using bagasse fly ash—a sugar industry waste. Water Res. 37(16), 4038–4044 (2003).  https://doi.org/10.1016/S0043-1354(03)00292-6 CrossRefGoogle Scholar
  19. 19.
    V.K. Gupta, I. Ali, T.A. Saleh, A. Nayak, S. Agarwal, Chemical treatment technologies for waste-water recycling—an overview. RSC Adv. 2(16), 6380–6388 (2012).  https://doi.org/10.1039/c2ra20340e CrossRefGoogle Scholar
  20. 20.
    M. Nourbakhsh, Y. Sag, D. Ozer, Z. Aksu, T. Kutsal, A. Caglar, A comparative-study of various biosorbents for removal of chromium(VI) ions from industrial-waste waters. Process Biochem. 29(1), 1–5 (1994).  https://doi.org/10.1016/0032-9592(94)80052-9 CrossRefGoogle Scholar
  21. 21.
    P. Xu, G.M. Zeng, D.L. Huang, C.L. Feng, S. Hu, M.H. Zhao, C. Lai, Z. Wei, C. Huang, G.X. Xie, Z.F. Liu, Use of iron oxide nanomaterials in wastewater treatment: a review. Sci. Total Environ. 424, 1–10 (2012).  https://doi.org/10.1016/j.scitotenv.2012.02.023 CrossRefGoogle Scholar
  22. 22.
    B.Y. Spivakov, K. Geckeler, E. Bayer, Liquid-phase polymer-based retention—the separation of metals by ultrafiltration on polychelatogens. Nature 315(6017), 313–315 (1985)CrossRefGoogle Scholar
  23. 23.
    M.K. Aroua, F.M. Zuki, N.M. Sulaiman, Removal of chromium ions from aqueous solutions by polymer-enhanced ultrafiltration. J. Hazard. Mater. 147(3), 752–758 (2007).  https://doi.org/10.1016/j.jhazmat.2007.01.120 CrossRefGoogle Scholar
  24. 24.
    B.L. Rivas, E.D. Pereira, I. Moreno-Villoslada, Water-soluble polymer–metal ion interactions. Prog. Polym. Sci. 28(2), 173–208 (2003).  https://doi.org/10.1016/S0079-6700(02)00028-X CrossRefGoogle Scholar
  25. 25.
    M.S. Diallo, S. Christie, P. Swaminathan, L. Balogh, X. Shi, W. Um, C. Papelis, W.A. Goddard III, J.H. Johnson Jr., Dendritic chelating agents. 1. Cu(II) binding to ethylene diamine core poly(amidoamine) dendrimers in aqueous solutions. Langmuir 20(7), 2640–2651 (2004).  https://doi.org/10.1021/la036108k CrossRefGoogle Scholar
  26. 26.
    M. Tulu, K.E. Geckeler, Synthesis and properties of hydrophilic polymers. Part 7. Preparation, characterization and metal complexation of carboxy-functional polyesters based on poly(ethylene glycol). Polym. Int. 48(9), 909–914 (1999). https://doi.org/10.1002/(sici)1097-0126(199909)48:9<909::aid-pi244>3.0.co;2-eGoogle Scholar
  27. 27.
    M.S. Diallo, S. Christie, P. Swaminathan, J.H. Johnson, W.A. Goddard, Dendrimer enhanced ultrafiltration. 1. Recovery of Cu(II) from aqueous solutions using PAMAM dendrimers with ethylene diamine core and terminal NH2 groups. Environ. Sci. Technol. 39(5), 1366–1377 (2005).  https://doi.org/10.1021/es048961r CrossRefGoogle Scholar
  28. 28.
    L. Dambies, A. Jaworska, G. Zakrzewska-Trznadel, B. Sartowska, Comparison of acidic polymers for the removal of cobalt from water solutions by polymer assisted ultrafiltration. J. Hazard. Mater. 178(1–3), 988–993 (2010).  https://doi.org/10.1016/j.jhazmat.2010.02.035 CrossRefGoogle Scholar
  29. 29.
    B.L. Rivas, E.D. Pereira, I. Moreno-Villoslada, Water-soluble polymer–metal ion interactions. Prog. Polym. Sci. 28(2), 173–208 (2003).  https://doi.org/10.1016/S0079-6700(02)00028-X CrossRefGoogle Scholar
  30. 30.
    A. Rether, M. Schuster, Selective separation and recovery of heavy metal ions using water-soluble N-benzoylthiourea modified PAMAM polymers. React. Funct. Polym. 57(1), 13–21 (2003).  https://doi.org/10.1016/j.reactfunctpolym.2003.06.002 CrossRefGoogle Scholar
  31. 31.
    F. Zeng, S.C. Zimmerman, Dendrimers in supramolecular chemistry: from molecular recognition to self-assembly. Chem. Rev. 97(5), 1681–1712 (1997)CrossRefGoogle Scholar
  32. 32.
    L. Balogh, D.A. Tomalia, Poly(amidoamine) dendrimer-templated nanocomposites. 1. Synthesis of zerovalent copper nanoclusters. J. Am. Chem. Soc. 120(29), 7355–7356 (1998).  https://doi.org/10.1021/ja980861w CrossRefGoogle Scholar
  33. 33.
    M.S. Diallo, L. Balogh, A. Shafagati, J.H. Johnson, W.A. Goddard, D.A. Tomalia, Poly(amidoamine) dendrimers: a new class of high capacity chelating agents for Cu(II) ions. Environ. Sci. Technol. 33(5), 820–824 (1999).  https://doi.org/10.1021/es980521a CrossRefGoogle Scholar
  34. 34.
    C.W. Li, C.H. Cheng, K.H. Choo, W.S. Yen, Polyelectrolyte enhanced ultrafiltration (PEUF) for the removal of Cd(II): effects of organic ligands and solution pH. Chemosphere 72(4), 630–635 (2008).  https://doi.org/10.1016/j.chemosphere.2008.02.036 CrossRefGoogle Scholar
  35. 35.
    R. Molinari, T. Poerio, P. Argurio, Chemical and operational aspects in running the polymer assisted ultrafiltration for separation of copper(II)–citrate complexes from aqueous media. J. Membr. Sci. 295(1–2), 139–147 (2007).  https://doi.org/10.1016/j.memsci.2007.03.002 CrossRefGoogle Scholar
  36. 36.
    C. Cojocaru, G. Zakrzewska-Trznadel, A. Jaworska, Removal of cobalt ions from aqueous solutions by polymer assisted ultrafiltration using experimental design approach. Part 1: optimization of complexation conditions. J. Hazard. Mater. 169(1), 599–609 (2009).  https://doi.org/10.1016/j.jhazmat.2009.03.145 CrossRefGoogle Scholar
  37. 37.
    N. Uzal, A. Jaworska, A. Miśkiewicz, G. Zakrzewska-Trznadel, C. Cojocaru, Optimization of Co2+ ions removal from water solutions via polymer enhanced ultrafiltration with application of PVA and sulfonated PVA as complexing agents. J. Colloid Interface Sci. 362(2), 615–624 (2011).  https://doi.org/10.1016/j.jcis.2011.06.072 CrossRefGoogle Scholar
  38. 38.
    G. Derringer, R. Suich, Simultaneous optimization of several response variables. J. Qual. Technol. 12(4), 214–219 (1980)CrossRefGoogle Scholar
  39. 39.
    L. Vera Candioti, M.M. De Zan, M.S. Cámara, H.C. Goicoechea, Experimental design and multiple response optimization. Using the desirability function in analytical methods development. Talanta 124, 123–138 (2014).  https://doi.org/10.1016/j.talanta.2014.01.034 CrossRefGoogle Scholar
  40. 40.
    E. Ghasemi, A. Heydari, M. Sillanpaa, Superparamagnetic Fe3O4@EDTA nanoparticles as an efficient adsorbent for simultaneous removal of Ag(I), Hg(II), Mn(II), Zn(II), Pb(II) and Cd(II) from water and soil environmental samples. Microchem. J. 131, 51–56 (2017).  https://doi.org/10.1016/j.microc.2016.11.011 CrossRefGoogle Scholar
  41. 41.
    M. Amini, H. Younesi, N. Bahramifar, Statistical modeling and optimization of the cadmium biosorption process in an aqueous solution using Aspergillus niger. Colloids Surf. A 337(1–3), 67–73 (2009).  https://doi.org/10.1016/j.colsurfa.2008.11.053 CrossRefGoogle Scholar
  42. 42.
    M. Amini, H. Younesi, Biosorption of Cd(II), Ni(II), and Pb(II) from aqueous solution by dried biomass of Aspergillus niger: application of response surface methodology to the optimization of process parameters. Clean Soil Air Water 37(10), 776–786 (2009).  https://doi.org/10.1002/clen.200900090 CrossRefGoogle Scholar
  43. 43.
    M. Amini, H. Younesi, N. Bahramifar, A.A.Z. Lorestani, F. Ghorbani, A. Daneshi, M. Sharifzadeh, Application of response surface methodology for optimization of lead biosorption in an aqueous solution by Aspergillus niger. J. Hazard. Mater. 154(1–3), 694–702 (2008).  https://doi.org/10.1016/j.jhazmat.2007.10.114 CrossRefGoogle Scholar
  44. 44.
    A.S. Ertürk, M.U. Gürbüz, M. Tülü, The effect of PAMAM dendrimer concentration, generation size and surface functional group on the aqueous solubility of candesartan cilexetil. Pharm. Dev. Technol. 22(1), 111–121 (2017).  https://doi.org/10.1080/10837450.2016.1219372 CrossRefGoogle Scholar
  45. 45.
    H. Watanabe, Spectrophotometric determination of cobalt with 1-(2-pyridylazo)-2-naphthol and surfactants. Talanta 21(4), 295–302 (1974).  https://doi.org/10.1016/0039-9140(74)80007-X CrossRefGoogle Scholar
  46. 46.
    D. Rana, T. Matsuura, M. Kassim, A. Ismail, Radioactive decontamination of water by membrane processes—a review. Desalination 321, 77–92 (2013)CrossRefGoogle Scholar
  47. 47.
    M.A. Bezerra, R.E. Santelli, E.P. Oliveira, L.S. Villar, L.A. Escaleira, Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76(5), 965–977 (2008).  https://doi.org/10.1016/j.talanta.2008.05.019 CrossRefGoogle Scholar
  48. 48.
    R.H. Myers, D.C. Montgomery, C.M. Anderson-Cook, Response Surface Methodology: Process and Product Optimization Using Designed Experiments (Wiley, Hoboken, 2016)Google Scholar
  49. 49.
    W.G. Cochran, G.M. Cox, Experimental designs (Wiley, Hoboken, 1957)Google Scholar
  50. 50.
    M.S. Diallo, W. Arasho, J.H. Johnson Jr., W.A. Goddard Iii, Dendritic chelating agents. 2. U(VI) binding to poly(amidoamine) and poly(propyleneimine) dendrimers in aqueous solutions. Environ. Sci. Technol. 42(5), 1572–1579 (2008)CrossRefGoogle Scholar
  51. 51.
    M. Palencia, B.L. Rivas, E. Pereira, A. Hernández, P. Prádanos, Study of polymer–metal ion–membrane interactions in liquid-phase polymer-based retention (LPR) by continuous diafiltration. J. Membr. Sci. 336(1–2), 128–139 (2009).  https://doi.org/10.1016/j.memsci.2009.03.016 CrossRefGoogle Scholar
  52. 52.
    B.L. Rivas, E.D. Pereira, M. Palencia, J. Sánchez, Water-soluble functional polymers in conjunction with membranes to remove pollutant ions from aqueous solutions. Prog. Polym. Sci. 36(2), 294–322 (2011).  https://doi.org/10.1016/j.progpolymsci.2010.11.001 CrossRefGoogle Scholar
  53. 53.
    J.W. Osborne, Improving your data transformations: applying the Box–Cox transformation. Pract. Assess. Res. Eval. 15(12), 2 (2010)Google Scholar
  54. 54.
    M.J. Anderson, P.J. Whitcomb, RSM Simplified: Optimizing Processes Using Response Surface Methods for Design of Experiments (Taylor & Francis, New York, 2005)Google Scholar
  55. 55.
    L.V. Candioti, J.C. Robles, V.E. Mantovani, H.C. Goicoechea, Multiple response optimization applied to the development of a capillary electrophoretic method for pharmaceutical analysis. Talanta 69(1), 140–147 (2006).  https://doi.org/10.1016/j.talanta.2005.09.021 CrossRefGoogle Scholar
  56. 56.
    J. Zolgharnein, A. Shahmoradi, J.B. Ghasemi, Comparative study of Box–Behnken, central composite, and Doehlert matrix for multivariate optimization of Pb(II) adsorption onto Robinia tree leaves. J. Chemom. 27(1–2), 12–20 (2013).  https://doi.org/10.1002/cem.2487 CrossRefGoogle Scholar
  57. 57.
    J. Zolgharnein, N. Asanjarani, T. Shariatmanesh, Taguchi L16 orthogonal array optimization for Cd(II) removal using Carpinus betulus tree leaves: adsorption characterization. Int. Biodeterior. Biodegrad. 85, 66–77 (2013).  https://doi.org/10.1016/j.ibiod.2013.06.010 CrossRefGoogle Scholar
  58. 58.
    J. Zolgharnein, A. Shahmoradi, Adsorption of Cr(VI) onto Elaeagnus tree leaves: statistical optimization, equilibrium modeling, and kinetic studies. J. Chem. Eng. Data 55(9), 3428–3437 (2010).  https://doi.org/10.1021/je100157y CrossRefGoogle Scholar
  59. 59.
    K. Geckeler, V. N. Rajasekharan Pillai, M. Mutter, Applications of soluble polymeric supports, in Polymer Products (Springer, Berlin, 1981), pp 65–94.  https://doi.org/10.1007/3-540-10218-3_2
  60. 60.
    E. Bayer, B.Y. Spivakov, K. Geckeler, Poly(ethyleneimine) as complexing agent for separation of metal ions using membrane filtration. Polym. Bull. 13(4), 307–311 (1985).  https://doi.org/10.1007/bf00262113 CrossRefGoogle Scholar
  61. 61.
    F. Fang, L. Kong, J. Huang, S. Wu, K. Zhang, X. Wang, B. Sun, Z. Jin, J. Wang, X.-J. Huang, J. Liu, Removal of cobalt ions from aqueous solution by an amination graphene oxide nanocomposite. J. Hazard. Mater. 270, 1–10 (2014).  https://doi.org/10.1016/j.jhazmat.2014.01.031 CrossRefGoogle Scholar
  62. 62.
    GdC Pizarro, O.G. Marambio, M. Jeria-Orell, D.P. Oyarzún, B.L. Rivas, W.D. Habicher, Preparation, characterization, and metal ion retention capacity of Co(II) and Ni(II) from poly(p-HO- and p-Cl-phenylmaleimide-co-2-hydroxypropylmethacrylate) using the ultra filtration technique. J. Appl. Polym. Sci. 106(4), 2448–2455 (2007).  https://doi.org/10.1002/app.26948 CrossRefGoogle Scholar
  63. 63.
    O.G. Marambio, GdC Pizarro, M. Jeria-Orell, M. Huerta, C. Olea-Azar, W.D. Habicher, Poly(N-phenylmaleimide-co-acrylic acid)–copper(II) and poly(N-phenylmaleimide-co-acrylic acid)–cobalt(II) complexes: synthesis, characterization, and thermal behavior. J. Polym. Sci. Part A: Polym. Chem. 43(20), 4933–4941 (2005).  https://doi.org/10.1002/pola.20955 CrossRefGoogle Scholar
  64. 64.
    P. Ilaiyaraja, A. Deb, D. Ponraju, Removal of uranium and thorium from aqueous solution by ultrafiltration (UF) and PAMAM dendrimer assisted ultrafiltration (DAUF). J. Radioanal. Nucl. Chem. 303(1), 441–450 (2015).  https://doi.org/10.1007/s10967-014-3462-x CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2018

Authors and Affiliations

  1. 1.Analytical Chemistry Department, Faculty of PharmacyAdıyaman UniversityAdıyamanTurkey

Personalised recommendations