Advertisement

Journal of the Iranian Chemical Society

, Volume 15, Issue 6, pp 1431–1448 | Cite as

Structural and electronic properties of nitrogen-doped TiO2 nanocrystals and their effects on the adsorption of CH2O and SO2 molecules investigated by DFT

  • Amirali AbbasiEmail author
  • Jaber Jahanbin Sardroodi
Original Paper
  • 101 Downloads

Abstract

The interaction of CH2O and SO2 molecules with TiO2 anatase nanocrystals were studied using the density functional theory calculations. Several adsorption positions of CH2O and SO2 molecules on the TiO2 surface were examined in detail. The results include the calculations of the adsorption energies, electronic structures and structural parameters of the adsorption systems. We found that both oxygen and carbon atoms of the CH2O molecule interact with TiO2 surface, while the hydrogen atoms does not contribute to the adsorption process. Besides, the oxygen atom of SO2 molecule strongly interacts with the TiO2. The adsorption of CH2O and SO2 on the N-doped surface is more favorable in energy than the adsorption on the pristine surface, suggesting that the N-doped nanocrystal acts as an appropriate sensing material. The substantial changes in the electronic structure near the fermi level reveal that the nitrogen modified TiO2 would be a promising sensing material for CH2O and SO2 detection. The charge density difference calculations reveal that the electronic density increases at the middle of the newly formed bonds, as evidenced by the significant overlaps of the projected density of states between the interacting atoms. Besides, the distribution of spin densities reveals that the magnetization was mainly located on the adsorbed CH2O molecule, being useful for the design and characterization of highly efficient gas sensors.

Keywords

CH2SO2 TiO2 nanocrystal DFT Adsorption Charge density difference 

Notes

Acknowledgements

This work has been supported by Azarbaijan Shahid Madani University (Grant No: 96/235).

Supplementary material

13738_2018_1343_MOESM1_ESM.docx (1.4 mb)
Supplementary material 1 (DOCX 1399 kb)

References

  1. 1.
    M. Addamo, V. Augugliaro, A.D. Paola, E.-G. López, V. Loddo, G. Marcì, R. Molinari, L. Palmisano, M. Schiavello, Preparation, characterization, and photoactivity of polycrystalline nanostructured TiO2 catalysts. J. Phys. Chem. B 108, 3303–3310 (2004)CrossRefGoogle Scholar
  2. 2.
    V.G. Deshmane, S.L. Owen, R.Y. Abrokwah, D. Kuila, Mesoporous nanocrystalline TiO2 supported metal (Cu, Co, Ni, Pd, Zn, and Sn) catalysts: effect of metal–support interactions on steam reforming of methanol. J. Mol. Catal. A 408, 202–213 (2015)CrossRefGoogle Scholar
  3. 3.
    A.M. Asaduzzaman, P. Kriiger, Adsorption and cluster growth of vanadium on TiO2 (110) studied by density functional theory. J. Phys. Chem. C 112, 4622–4625 (2008)CrossRefGoogle Scholar
  4. 4.
    C.W. Gong, J.R. Jiao, J.H. Wang, W. Shao, Structural, optical and magnetic properties of W-doped TiO2: theory and experiment. Phys. B Condes. Matter 457, 140–143 (2015)CrossRefGoogle Scholar
  5. 5.
    A.L. Linsebigler, G.Q. Lu, J.T.Y. Jr., Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 95, 735–758 (1995)CrossRefGoogle Scholar
  6. 6.
    M.A. Fox, M.T. Dulay, Heterogeneous photocatalysis. Chem. Rev. 93, 341–357 (1993)CrossRefGoogle Scholar
  7. 7.
    U. Diebold, The surface science of titanium dioxide. Surf. Sci. Rep. 48, 53–229 (2003)CrossRefGoogle Scholar
  8. 8.
    M.H. Suhail, G. Mohan Rao, S. Mohan, DC reactive magnetron sputtering of titanium-structural and optical characterization of TiO2 films. J. Appl. Phys. 71, 1421–1427 (1992)CrossRefGoogle Scholar
  9. 9.
    Y.B. Xia, K. Zhu, T.C. Kaspar, Y.G. Du, B. Birmingham, K.T. Park, Z.R. Zhang, Atomic structure of the anatase TiO2 (001) surface. J. Phys. Chem. Lett. 4, 2958–2963 (2013)CrossRefGoogle Scholar
  10. 10.
    M. Lazzeri, A. Selloni, Stress-driven reconstruction of an oxide surface: the anatase TiO2 (001)-(1 × 4) surface. Phys. Rev. Lett. 87, 266105–1–266105-4 (2001)CrossRefGoogle Scholar
  11. 11.
    Y. Lu, Y.P. Zang, H.M. Zhang, Meaningful comparison of photocatalytic properties of 001 and 101 faceted anatase TiO2 nanocrystals. Sci. Bull. 61, 1003–1012 (2016)CrossRefGoogle Scholar
  12. 12.
    X.Q. Gong, A. Selloni, Reactivity of anatase TiO2 nanoparticles: the role of the minority (001) surface. J. Phys. Chem. B 109, 19560–19562 (2005)CrossRefGoogle Scholar
  13. 13.
    X.Q. Gong, A. Selloni, A. Vittadini, Density functional theory study of formic acid adsorption on anatase TiO2 (001): geometries, energetics, and effects of coverage, hydration, and reconstruction. J. Phys. Chem. B 110, 2804–2811 (2006)CrossRefGoogle Scholar
  14. 14.
    Z.B. Li, X. Wang, L.C. Jia, X.B. Xing, Reduction of HCHO with OH on Pt loading anatase TiO2 (001) surface: a DFT calculation. Catal. Commun. 92, 23–26 (2017)CrossRefGoogle Scholar
  15. 15.
    R. Hummatov, O. Gulseren, E. Ozensoy, D. Toffoli, H. Ustunel, First-principles investigation of NOx and SOx adsorption on anatase supported BaO and Pt overlayers. J. Phys. Chem. C 116, 6191–6199 (2012)CrossRefGoogle Scholar
  16. 16.
    W.F. Schneider, J. Li, K.C. Hass, Combined computational and experimental investigation of SOx adsorption on MgO. J. Phys. Chem. B 105, 6972–6979 (2001)CrossRefGoogle Scholar
  17. 17.
    S. Tang, Z. Cao, Adsorption of nitrogen oxides on graphene and graphene oxides: insights from density functional calculations. J. Chem. Phys 134, 044710 (2011)CrossRefGoogle Scholar
  18. 18.
    S. Tang, J. Zhu, Structural and electronic properties of Pd decorated graphene oxides and their effects on the adsorption of nitrogen oxides: insights from density functional calculations. J. RSC Adv. 4, 23084–23096 (2014)CrossRefGoogle Scholar
  19. 19.
    A. Abbasi, J.J. Sardroodi, A.R. Ebrahimzadeh, Chemisorption of CH2O on N-doped TiO2 anatase nanoparticle as modified nanostructure media: a DFT study. Surf. Sci. 654, 20–32 (2016)CrossRefGoogle Scholar
  20. 20.
    A. Abbasi, J.J. Sardroodi, N-doped TiO2 anatase nanoparticles as a highly sensitive gas sensor for NO2 detection: insights from DFT computations. Environ. Sci. Nano 3, 1153–1164 (2016)CrossRefGoogle Scholar
  21. 21.
    A. Abbasi, J.J. Sardroodi, Modified N-doped TiO2 anatase nanoparticle as an ideal O3 gas sensor: insights from density functional theory calculations. Comput. Theor. Chem. 1095, 15–28 (2016)CrossRefGoogle Scholar
  22. 22.
    A. Abbasi, J.J. Sardroodi, A novel strategy for SOx removal by N-doped TiO2/WSe2 nanocomposite as a highly efficient molecule sensor investigated by van der Waals corrected DFT. Comput. Theor. Chem. 1114, 8–9 (2017)CrossRefGoogle Scholar
  23. 23.
    A. Abbasi, J.J. Sardroodi, Prediction of a highly sensitive molecule sensor for SOx detection based on TiO2/MoS2 nanocomposites: a DFT study. J. Sulfur Chem. 38(1), 52–68 (2017)CrossRefGoogle Scholar
  24. 24.
    A. Abbasi, J.J. Sardroodi, An innovative gas sensor system designed from a sensitive nanostructured ZnO for the selective detection of SOx molecules: a density functional theory study. New J. Chem. 41, 12569–12580 (2017)CrossRefGoogle Scholar
  25. 25.
    A. Abbasi, J.J. Sardroodi, Theoretical study of the adsorption of NOx on TiO2/MoS2 nanocomposites: a comparison between undoped and N-doped nanocomposites. J. Nanostruct. Chem. 6, 309–327 (2016)CrossRefGoogle Scholar
  26. 26.
    A. Abbasi, J.J. Sardroodi, Investigation of the adsorption of ozone molecules on TiO2/WSe2 nanocomposites by DFT computations: applications to gas sensor devices. Appl. Surf. Sci. 436, 27–41 (2018)CrossRefGoogle Scholar
  27. 27.
    A. Abbasi, J.J. Sardroodi, Adsorption of toxic SOx molecules on heterostructured TiO2/ZnO nanocomposites for gas sensing applications: a DFT study. Adsorption 24, 29–41 (2018)CrossRefGoogle Scholar
  28. 28.
    A. Abbasi, J.J. Sardroodi, A.R. Ebrahimzadeh, M. Yaghoobi, Theoretical study of the structural and electronic properties of novel stanene-based buckled nanotubes and their adsorption behaviors. Appl. Surf. Sci. 435, 733–742 (2018)CrossRefGoogle Scholar
  29. 29.
    A. Abbasi, J.J. Sardroodi, Molecular design of O3 and NO2 sensor devices based on a novel heterostructured N-doped TiO2/ZnO nanocomposite: a van der Waals corrected DFT study. J Nanostruct. Chem. 7, 345–358 (2017)CrossRefGoogle Scholar
  30. 30.
    N. Yamazoe, G. Sakai, K. Shimanoe, Oxide semiconductor gas sensors. Catal. Surv. Asia 7, 63 (2003)CrossRefGoogle Scholar
  31. 31.
    Z. Topalian, J.M. Smulko, G.A. Niklasson, C.G. Granqvist, Resistance noise in TiO2-based thin film gas sensors under ultraviolet irradiation. J. Phys. Conf. Ser. 76, 012056 (2007)CrossRefGoogle Scholar
  32. 32.
    T.Y. Yang, H.M. Lin, B.Y. Wei, C.Y. Wu, C.K. Lin, UV enhancement of the gas sensing properties of nano-TiO2. Rev. Adv. Mater. Sci. 4, 48 (2003)CrossRefGoogle Scholar
  33. 33.
    J. Li, Q. Zhang, A.C.K. Lai, L.P. Zeng, Study on photocatalytic performance of cerium–graphene oxide–titanium dioxide composite film for formaldehyde removal. Phys. Status Solidi A 12, 3157–3164 (2016)CrossRefGoogle Scholar
  34. 34.
    L.H. Nie, J.G. Yu, M. Jaroniec, F.F. Tao, Room-temperature catalytic oxidation of formaldehyde on catalysts. Catal. Sci. Technol. 6, 3649–3669 (2016)CrossRefGoogle Scholar
  35. 35.
    P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136, B864 (1964)CrossRefGoogle Scholar
  36. 36.
    W. Kohn, L. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965)CrossRefGoogle Scholar
  37. 37.
    The code, OPENMX, pseudoatomic basis functions, and pseudopotentials are available on a web site http://www.openmxsquare.org. Accessed 28 May 2004
  38. 38.
    T. Ozaki, Variationally optimized atomic orbitals for large-scale electronic structures. Phys. Rev. B 67, 155108 (2003)CrossRefGoogle Scholar
  39. 39.
    T. Ozaki, H. Kino, Numerical atomic basis orbitals from H to Kr. Phys. Rev. B 69, 195113 (2004)CrossRefGoogle Scholar
  40. 40.
    T. Ozaki, H. Kino, Variationally optimized basis orbitals for biological molecules. J. Chem. Phys. 121, 10879 (2004)CrossRefGoogle Scholar
  41. 41.
    J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 78, 1396 (1981)CrossRefGoogle Scholar
  42. 42.
    S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27(15), 1787–1799 (2006)CrossRefGoogle Scholar
  43. 43.
    A. Koklj, Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale. Comput. Mater. Sci. 28, 155–168 (2003)CrossRefGoogle Scholar
  44. 44.
    K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011)CrossRefGoogle Scholar
  45. 45.
    H. Liu, M. Zhao, Y. Lei, C. Pan, W. Xiao, Formaldehyde on TiO2 anatase (1 0 1): a DFT study. Comput. Mater. Sci. 15, 389–395 (2012)CrossRefGoogle Scholar
  46. 46.
    Web page at http://rruff.geo.arizona.edu/AMS/amcsd.php. Accessed 3 Dec 2004
  47. 47.
    R.W.G. Wyckoff, Crystal Structures, 2nd edn. (Interscience Publishers, New York, 1963)Google Scholar
  48. 48.
    A.S. Barnard, P. Zapol, Effects of particle morphology and surface hydrogenation on the phase stability of TiO2. Phys. Rev. B. 70, 235403 (2004)CrossRefGoogle Scholar
  49. 49.
    G. Fazio, L. Ferrighi, C.D. Valentin, Spherical versus faceted anatase TiO2 nanoparticles: a model study of structural and electronic properties. Phys. Chem. C 119(35), 20735–20746 (2015)CrossRefGoogle Scholar
  50. 50.
    A.S. Barnard, S. Erdin, Y. Lin, P. Zapol, J.W. Halley, Modeling the structure and electronic properties of TiO2 nanoparticles. Phys. Rev. B 73, 205405 (2006)CrossRefGoogle Scholar
  51. 51.
    Y. Lei, H. Liu, W. Xiao, First principles study of the size effect of TiO2 anatase nanoparticles in dye-sensitized solar cell. Model. Simul. Mater. Sci. Eng. 18, 025004-1–025004-9 (2010)CrossRefGoogle Scholar
  52. 52.
    J. Liu, L. Dong, W. Guo, T. Liang, W. Lai, CO adsorption and oxidation on N-doped TiO2 nanoparticles. J. Phys. Chem. C 117, 13037–13044 (2013)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2018

Authors and Affiliations

  1. 1.Molecular Simulation Laboratory (MSL)Azarbaijan Shahid Madani UniversityTabrizIran
  2. 2.Computational Nanomaterials Research Group (CNRG)Azarbaijan Shahid Madani UniversityTabrizIran
  3. 3.Department of Chemistry, Faculty of Basic SciencesAzarbaijan Shahid Madani UniversityTabrizIran

Personalised recommendations