Journal of the Iranian Chemical Society

, Volume 15, Issue 6, pp 1301–1310 | Cite as

Comparing the photocatalytic activity of N-doped and S-doped titanium dioxide nanoparticles for water splitting under sunlight radiation

  • Maryam Taherinia
  • Mohammad NasiriEmail author
  • Ebrahim Abedini
  • Hamid Reza Pouretedal
Original Paper


The objective of this research is to compare the photocatalytic activity of nanoparticles of N-doped and S-doped titanium dioxide in water splitting by using sunlight radiation for hydrogen production. The sol–gel method was used for the preparation of nanoparticles of doped TiO2 and the weight percent of doping element was 2, 4, 6 and 8. The prepared nanoparticles were identified by absorbance spectra of UV–Vis and FT-IR, TGA, XRD patterns, FE-SEM images and EDX spectra. The nanoparticles of S–\({\text{TiO}}_{2}\) indicated the lower band gap and lesser particle size versus N–\({\text{TiO}}_{2}\) nanoparticles. Nevertheless, the nanoparticles of N–\({\text{TiO}}_{2}\) showed the higher photocatalytic activity in hydrogen production process. The activity of doped samples with sulfur (S–\({\text{TiO}}_{2}\)) was reduced by the presence of sulfate anions, and the absorption of radiation in the samples surface was due to a decrease in the number of electron–hole pair in photocatalyst. The photocatalytic activity of N–\({\text{TiO}}_{2}\) was also increased with the increasing in weight fraction of N atoms, and the highest hydrogen production was obtained in 6 wt% of nitrogen.


Titanium dioxide Water splitting Photocatalyst Nanoparticle Hydrogen production 



The authors are grateful to Council of Maleke Ashtar University of Technology for providing financial support to undertake this work.


  1. 1.
    N. Meng, M.K.H. Leung, D.Y.C. Leung, K. Sumathy, A review and recent developments in photocatalytic water-splitting using \(\text{ TiO }_{2}\) for hydrogen production. Renew. Sustain. Energy Rev. 11, 401–425 (2007)CrossRefGoogle Scholar
  2. 2.
    S.A. Ansari, M.M. Khan, M.O. Ansari, M.H. Cho, Nitrogen-doped titanium dioxide (N-doped \(\text{ TiO }_{2}\) ) for visible light photocatalysis. New J. Chem. 40, 3000–3009 (2016)CrossRefGoogle Scholar
  3. 3.
    M. Hamadanian, A. Reisi-Vanani, A. Majedi, Preparation and characterization of S-doped \(\text{ TiO }_{2}\) nanoparticles, effect of calcination temperature and evaluation of photocatalytic activity. Mater. Chem. Phys. 116, 376–382 (2009)CrossRefGoogle Scholar
  4. 4.
    P. Periyat, D.E. McCormack, S.J. Hinder, S.C. Pillai, One-pot synthesis of anionic (nitrogen) and cationic (sulfur) codoped high-temperature stable visible light active, anatase photocatalysts. J. Phys. Chem. C 113, 3246–3253 (2009)CrossRefGoogle Scholar
  5. 5.
    M. Katoh, H. Aihara, T. Horikawa, T. Tomida, Spectroscopic study for photocatalytic decomposition of organic compounds on titanium dioxide containing sulfur under visible light irradiation. J. Colloid Interface Sci. 298, 805–809 (2006)CrossRefGoogle Scholar
  6. 6.
    P.V.R.K. Ramacharyulu, D.B. Nimbalkar, J.P. Kumar, G.K. Prasad, S.C. Ke, N-doped, S-doped \(\text{ TiO }_{2}\) nanocatalysts: synthesis, characterization and photocatalytic activity in the presence of sunlight. RSC Adv. 5, 37096–37101 (2015)CrossRefGoogle Scholar
  7. 7.
    N.D. Abazovi, A. Montone, L. Mirenghi, M. Comor, N.D. Abazovi, A. Montone, L. Mirenghi, I. Jankovi, I. Mirjana, \(\text{ TiO }_{2}\) doped with nitrogen: synthesis and characterization. J. Nanosci. Nanotechnol. 8, 613–618 (2008)CrossRefGoogle Scholar
  8. 8.
    M. Mrowetz, W. Balcerski, A.J. Colussi, M.R. Hoffmann, C. Fisica, V. Uni, Oxidative power of nitrogen-doped \(\text{ TiO }_{2}\) photocatalysts under visible illumination. J. Phys. Chem. 108, 1726917273 (2004)CrossRefGoogle Scholar
  9. 9.
    X. Cheng, X. Yu, Z. Xing, Characterization and mechanism analysis of N doped \(\text{ TiO }_{2}\) with visible light response and its enhanced visible activity. Appl. Surf. Sci. 258, 3244–3248 (2012)CrossRefGoogle Scholar
  10. 10.
    K. Villa, A. Black, X. Dome, Nitrogen doped \(\text{ TiO }_{2}\) for hydrogen production under visible light irradiation. Solar Energy 86, 558–566 (2012)CrossRefGoogle Scholar
  11. 11.
    J. Yuan, M. Chen, J. Shi, W. Shangguan, Preparations and photocatalytic hydrogen evolution of N-doped \(\text{ TiO }_{2}\) from urea and titanium tetrachloride. Int. J. Hydrogen Energy 31, 1326–1331 (2006)CrossRefGoogle Scholar
  12. 12.
    K. Nishijima, T. Kamai, N. Murakami, T. Tsubota, T. Ohno, Photocatalytic hydrogen or oxygen evolution from water over S- or N-Doped \(\text{ TiO }_{2}\) under visible light. Int. J. Photoenergy 2008, 1–7 (2008)CrossRefGoogle Scholar
  13. 13.
    Z. Xing, Z. Li, X. Wu, G. Wang, W. Zhou, In-situ S-doped porous anatase \(\text{ TiO }_{2}\) nanopillars for high-efficient visible-light photocatalytic hydrogen evolution. Int. J. Hydrogen Energy 41, 1535–1541 (2016)CrossRefGoogle Scholar
  14. 14.
    H. R. Pouretedal, O. Shevidi, M. Nasiri, Red water treatment by photodegradation process in presence of modified \(\text{ TiO }_{2}\) nanoparticles and validation of treatment efficiency by MLR technique. J. Iran. Chem. Soc. 13, 2267–2274 (2016)CrossRefGoogle Scholar
  15. 15.
    H. Moradi, A. Eshaghi, S. Rahman, K. Ghani, Fabrication of Fe-doped \(\text{ TiO }_{2}\) nanoparticles and investigation of photocatalytic decolorization of reactive red 198 under visible light irradiation. Ultrason. Sonochem. 32, 314–319 (2016)CrossRefGoogle Scholar
  16. 16.
    P. Anil, K. Reddy, P. Venkata, L. Reddy, V.M. Sharma, Photocatalytic degradation of isoproturon pesticide on C, N and S doped \(\text{ TiO }_{2}\). J. Water Resour. Prot. 2, 235–244 (2010)CrossRefGoogle Scholar
  17. 17.
    T.S. Le, Q.B. Ngo, V.D. Nguyen, H.C. Nguyen, T.H. Dao, X.T. Tran, E.N. Kabachkov, I.L. Balikhin, Photocatalytic equipment with nitrogen-doped titanium dioxide for air cleaning and disinfecting. Adv. Nat. Sci. Nanosci. Nanotechnol. 5, 015017 (2014)CrossRefGoogle Scholar
  18. 18.
    J.A. Mary, J.J. Vijaya, M. Bououdina, L.J. Kennedy, J.H. Daie, Y. Song, Investigation of structural, surface morphological, optical properties and first-principles study on electronic and magnetic properties of (Ce, Fe)-co doped ZnO. Phys. B Condens. Matter 456, 344–354 (2015)CrossRefGoogle Scholar
  19. 19.
    K. Kalantari, M. Kalbasi, M. Sohrabi, S.J. Royaee, Synthesis and characterization of N-doped \(\text{ TiO }_{2}\) nanoparticles and their application in photocatalytic oxidation of dibenzothiophene under visible light. Ceram. Int. 42, 14834–14842 (2016)CrossRefGoogle Scholar
  20. 20.
    F. Tian, C. Liu, W. Zhao, X. Wang, Z. Wang, J. Yu, Cationic S-doped anatase \(\text{ TiO }_{2}\) : a DFT study. J. Comput. Sci. Eng. 1, 33–41 (2011)Google Scholar
  21. 21.
    M. Zhou, J. Yu, Preparation and enhanced daylight-induced photocatalytic activity of C, N, S-tridoped titanium dioxide powders. J. Hazard. Mater. 152, 1229–1236 (2008)CrossRefGoogle Scholar
  22. 22.
    S.D. Delekar, H.M. Yadav, S.N. Achary, S.S. Meena, S.H. Pawar, Structural refinement and photocatalytic activity of Fe-doped anatase \(\text{ TiO }_{2}\) nanoparticles. Appl. Surf. Sci. 263, 536–545 (2012)CrossRefGoogle Scholar
  23. 23.
    E. Pulido Melin, M. Nereida Surez, T. Jardiel, J.M. Dona Rodrguez, A.C. Caballero, J. Arana, D.G. Calatayud, O. Gonzlez Daz, Influence of nickel in the hydrogen production activity of \(\text{ TiO }_{2}\). Appl. Catal. B Environ. 152–153, 192–201 (2014)CrossRefGoogle Scholar
  24. 24.
    S. Larumbe, M. Monge, C. Gómez-Polo, Comparative study of (N, Fe) doped \(\text{ TiO }_{2}\) photocatalysts. Appl. Surf. Sci. 327, 490–497 (2015)CrossRefGoogle Scholar
  25. 25.
    A. Siddiqa, D. Masih, D. Anjum, M. Siddiq, Cobalt and sulfur co-doped nano-size \(\text{ TiO }_{2}\) for photodegradation of various dyes and phenol. J. Environ. Sci. 37, 100–109 (2015)CrossRefGoogle Scholar
  26. 26.
    M. Nasir, Z. Xi, M. Xing, J. Zhang, F. Chen, B. Tian, S. Bagwasi, Study of synergistic effect of Ce- and S-codoping on the enhancement of visible-light photocatalytic activity of \(\text{ TiO }_{2}\). J. Phys. Chem. C 117, 9520–9528 (2013)CrossRefGoogle Scholar
  27. 27.
    D. Li, L. Li, W. Guo, Z. Chang, M. Lu, Materials science in semiconductor processing synthesis and characterization of Mo-Sb-S tridoped \(\text{ TiO }_{2}\) nanoparticles with enhanced visible light photocatalytic activity. Mater. Sci. Semicond. Process. 31, 530–535 (2015)CrossRefGoogle Scholar
  28. 28.
    H.R. Pouretedal, A.M. Sohrabi, Photosensitization of \(\text{ TiO }_{2}\) by ZnS and bromo thymol blue and its application in photodegradation of para nitrophenol. J. Iran. Chem. Soc. 13, 73–79 (2016)CrossRefGoogle Scholar
  29. 29.
    K.M. Parida, N. Sahu, A.K. Tripathi, V.S. Kamble, Gold promoted S, N-doped \(\text{ TiO }_{2}\): an efficient catalyst for CO adsorption and oxidation. Environ. Sci. Technol. 44, 4155–4160 (2010)CrossRefGoogle Scholar
  30. 30.
    P. Praveen, G. Viruthagiri, S. Mugundan, N. Shanmugam, Sol-gel synthesis and characterization of pure and manganese doped \(\text{ TiO }_{2}\) nanoparticles-a new NLO active material. Spectrochim. Acta A Mol. Biomol. Spectrosc. 120, 548–57 (2014)CrossRefGoogle Scholar
  31. 31.
    M. Hamadanian, A. Reisi-vanani, M. Behpour, A.S. Esmaeily, Synthesis and characterization of Fe, S-codoped \(\text{ TiO }_{2}\) nanoparticles : Application in degradation of organic water pollutants. DES 281, 319–324 (2011)CrossRefGoogle Scholar
  32. 32.
    W. Junwei, Z. Wei, Z. Yinqing, L. Shuangxi, An efficient two-step technique for nitrogen-doped titanium dioxide synthesizing: visible-light-induced photodecomposition of methylene blue. J. Phys. Chem. C 111, 1010–1014 (2007)CrossRefGoogle Scholar
  33. 33.
    J.I. Brauer, G. Szulczewski, Important role of surface fluoride in nitrogen-doped \(\text{ TiO }_{2}\) nanoparticles with visible light photocatalytic activity. J. Phys. Chem. B 118, 14188–14195 (2014)CrossRefGoogle Scholar
  34. 34.
    W. Su, J. Zhang, Z. Feng, T. Chen, P. Ying, C. Li, Surface phases of \(\text{ TiO }_{2}\) nanoparticles studied by UV Raman spectroscopy and FT-IR spectroscopy. J. Phys. Chem. C 112, 7710–7716 (2008)CrossRefGoogle Scholar
  35. 35.
    M. Hakamizadeh, S. Afshar, A. Tadjarodi, R. Khajavian, M.R. Fadaie, B. Bozorgi, Improving hydrogen production via water splitting over \(\text{ Pt }/\text{ TiO }_{2}\)/activated carbon nanocomposite. Int. J. Hydrogen Energy 39, 7262–7269 (2014)CrossRefGoogle Scholar
  36. 36.
    Z. Wu, W. Zhang, F. Xiong, Q. Yuan, Y. Jin, Active hydrogen species on \(\text{ TiO }_{2}\) for photocatalytic \(\text{H}_{2}\) production. Phys. Chem. Chem. Phys. 16, 7051–7057 (2014)CrossRefGoogle Scholar
  37. 37.
    Q. Guo, C. Zhou, Z. Ma, Z. Ren, H. Fan, X. Yang, Elementary photocatalytic chemistry on \(\text{ TiO }_{2}\) surfaces. Chem. Soc. Rev. 45, 3701–3730 (2016)CrossRefGoogle Scholar
  38. 38.
    C. Xu, W. Yang, Q. Guo, D. Dai, M. Chen, X. Yang, Molecular hydrogen formation from photocatalysis of methanol on anatase-\(\text{ TiO }_{2}\) (101). J. Am. Chem. Soc. 136, 602–605 (2014)CrossRefGoogle Scholar
  39. 39.
    B.S. Huang, M. Wey, Properties and H2 production ability of Pt photodeposited on the anatase phase transition of nitrogen-doped titanium dioxide. Int. J. Hydrogen Energy 36, 9479–9486 (2011)CrossRefGoogle Scholar
  40. 40.
    S. Pany, B. Naik, S. Martha, K. Parida, Plasmon induced nano Au particle decorated over S, N-modified TiO2 for exceptional photocatalytic hydrogen evolution under visible light. ACS Appl. Mater. Interfaces 6, 839–846 (2014)CrossRefGoogle Scholar
  41. 41.
    L.K. Randeniya, A.B. Murphy, I.C. Plumb, A study of S-doped TiO2 for photoelectrochemical hydrogen generation from water. J. Mater. Sci. 43, 1389–1399 (2008)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2018

Authors and Affiliations

  • Maryam Taherinia
    • 1
  • Mohammad Nasiri
    • 1
    Email author
  • Ebrahim Abedini
    • 1
  • Hamid Reza Pouretedal
    • 1
  1. 1.Department of ChemistryMalek-Ashtar University of TechnologyShahin-ShahrIslamic Republic of Iran

Personalised recommendations