Advertisement

The plutonium chemistry of Pu + O2 system: the theoretical investigation of the plutonium–oxygen interaction

  • Wenlang LuoEmail author
  • Qingqing Wang
  • Xiaoli Wang
  • Tao Gao
Original Paper
  • 8 Downloads

Abstract

The minimum energy pathway of the reaction Pu + O2 → PuO + O has been computed with density functional theory using different functionals. The detailed description of the reaction mechanisms offers a deep insight into the reaction. The results indicate that the title reaction is exothermic. The nature of the Pu–O mode bonding evolution along the pathways was studied using electron localization function. The variation of density of state along the pathway was performed for analyzing the role of 5f electrons/orbitals in the title reaction. The analyses of results show that the 5f orbitals of plutonium atom make great contributions to HOMO orbitals. Additionally, based on the optimized geometries, Infrared spectra and Raman spectra are obtained and discussed.

Keywords

Reaction mechanisms Electron localization function Density of state Infrared spectra 

Notes

Acknowledgements

Thanks a lot to Dr. Sobereva for the useful discussions. We are also very thankful to the Center of High Performance Computing in the Physics of Sichuan University providing computer time. Project supported by the National Natural Science Foundation of China (Grant No. 11364023).

References

  1. 1.
    R.M. Cox, P.B. Armentrout, W.A. de Jong, J. Phys. Chem. B. 120, 1601 (2016).  https://doi.org/10.1021/acs.jpcb.5b08008 CrossRefGoogle Scholar
  2. 2.
    K. Gibson, R.G. Haire, J. Marcalo, M. Santos, A.P. de Matos, M.K. Mrozik, R.M. Pitzer, B.E. Bursten, Organometallics. 26, 3947 (2007).  https://doi.org/10.1021/om700329h CrossRefGoogle Scholar
  3. 3.
    J. Zhou, H.B. Schlegel, J. Phys. Chem. A 114, 8613 (2010).  https://doi.org/10.1021/jp912098 CrossRefGoogle Scholar
  4. 4.
    J. Marcalo, J.K. Gibson, J. Phys. Chem. A 113, 12599 (2009).  https://doi.org/10.1021/jp904862a CrossRefGoogle Scholar
  5. 5.
    K.J. de Almeida, H.A. Duarte, Organometallics. 28, 3203 (2009).  https://doi.org/10.1021/om801136n CrossRefGoogle Scholar
  6. 6.
    C.C.L. Pereira, C.J. Marsden, J. Marcalo, J.K. Gibson, Phys. Chem. Chem. Phys. 13, 12940 (2011).  https://doi.org/10.1039/C1CP20996E CrossRefGoogle Scholar
  7. 7.
    MdC. Michelini, N. Russo, E. Sicilia, J. Am. Chem. Soc. 129, 4229 (2007).  https://doi.org/10.1021/ja065683i CrossRefGoogle Scholar
  8. 8.
    M.C. Heaven, B.J. Barker, I.O. Antonov, J. Phys. Chem. A 118, 10867 (2014).  https://doi.org/10.1021/jp507283n CrossRefGoogle Scholar
  9. 9.
    R.M. Cox, P.B. Armentrout, W.A. de Jong, Inorg. Chem. 54, 3584 (2015).  https://doi.org/10.1021/acs.inorgchem.5b00137 CrossRefGoogle Scholar
  10. 10.
    B. Liang, L. Andrews, J. Li, B.E. Bursten, J. Am. Chem. Soc. 124, 6723 (2002).  https://doi.org/10.1021/ja012593z CrossRefGoogle Scholar
  11. 11.
    M. Santos, J. Marcalo, J.P. Leal, A.P. de Matos, J.K. Gibson, R.G. Haire, Int. J. Mass Spectrom. 228, 457 (2003).  https://doi.org/10.1016/S1387-3806(03)00138-6 CrossRefGoogle Scholar
  12. 12.
    J.K. Gibson, R.G. Haire, M. Santos, J. Marc alo, A.Pires de Matos, J. Phys. Chem. A 109, 2768 (2005).  https://doi.org/10.1021/jp0447340 CrossRefGoogle Scholar
  13. 13.
    V. Goncharov, M.C. Heaven, J. Chem. Phys. 124, 064312 (2006).  https://doi.org/10.1063/1.2167356 CrossRefGoogle Scholar
  14. 14.
    M.C. Heaven, Phys. Chem. Chem. Phys. 8, 4497 (2006).  https://doi.org/10.1039/B607486C CrossRefGoogle Scholar
  15. 15.
    M. Santos, J. Marcalo, A.P. de Matos, J.K. Gibson, R.G. Haire, J. Phys. Chem. A 106, 7190 (2002).  https://doi.org/10.1021/jp025733f CrossRefGoogle Scholar
  16. 16.
    M.C. Michelini, N. Russo, E. Sicilia, J. Am. Chem. Soc. 129, 4229 (2007).  https://doi.org/10.1021/ja065683i CrossRefGoogle Scholar
  17. 17.
    W. Niu, H. Zhang, P. Li, T. Gao, Int. J. Quantum Chem. 115, 6 (2015).  https://doi.org/10.1002/qua.24753 CrossRefGoogle Scholar
  18. 18.
    G. Mazzone, M.C. Michelini, N. Russo, E. Sicilia, Inorg. Chem. 6, 2083 (2008).  https://doi.org/10.1021/ic701789n Google Scholar
  19. 19.
    M.C. Michelini, N. Russo, E. Sicilia, Angew. Chem.Int. Ed. 45, 1095 (2006).  https://doi.org/10.1002/anie.200501931 CrossRefGoogle Scholar
  20. 20.
    J.M. Haschke, T.H. Allen, J.L. Stakebake, J. Alloys Compd. 243, 23 (1996).  https://doi.org/10.1016/S0925-8388(96)02328-6 CrossRefGoogle Scholar
  21. 21.
    J.K. Gibson, R.G. Haire, M. Santos, J. Marçalo, A. Pires de Matos, J. Phys. Chem. A 109, 2768 (2005).  https://doi.org/10.1021/jp0447340 CrossRefGoogle Scholar
  22. 22.
    H.L. Yu, G. Li, H.B. Li, R.Z. Qiu, H. Huang, D.Q. Meng, J. Alloys Compd. 654, 567 (2016).  https://doi.org/10.1016/j.jallcom.2015.09.097 CrossRefGoogle Scholar
  23. 23.
    H.L. Yu, T. Tang, S.T. Zheng, Y. Shi, R.Z. Qiu, W.H. Luo, D.Q. Meng, J. Alloys Compd. 666, 287 (2016).  https://doi.org/10.1016/j.jallcom.2016.01.095 CrossRefGoogle Scholar
  24. 24.
    P. Li, W.X. Niu, T. Gao, H.Y. Wang, ChemPhysChem. 15, 3078 (2014).  https://doi.org/10.1002/cphc.201402327 CrossRefGoogle Scholar
  25. 25.
    Gaussian 09 (Revision A.02), M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, C. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian, Inc., Wallingford (2009)Google Scholar
  26. 26.
    A.D. Becke, J. Chem. Phys. 98, 1372 (1993).  https://doi.org/10.1063/1.464304 CrossRefGoogle Scholar
  27. 27.
    A.D. Becke, J. Chem. Phys. 98, 5648 (1993).  https://doi.org/10.1063/1.464913 CrossRefGoogle Scholar
  28. 28.
    C. Lee, W. Yang, R.G. Parr, Phys. Rev. 37, 785 (1988).  https://doi.org/10.1103/PhysRevB.37.785 CrossRefGoogle Scholar
  29. 29.
    R. Krishnan, J.S. Binkley, R. Seeger, J.A. Pople, J. Chem. Phys. 72, 650 (1980).  https://doi.org/10.1063/1.438955 CrossRefGoogle Scholar
  30. 30.
    J.P. Blaudeau, M.P. McGrath, L.A. Curtiss, L. Radom, J. Chem. Phys. 107, 5016 (1997).  https://doi.org/10.1063/1.474865 CrossRefGoogle Scholar
  31. 31.
    T. Clark, J. Chandrasekhar, PvR. Schleyer, J. Chem. Phys. 74, 294 (1983).  https://doi.org/10.1002/jcc.540040303 Google Scholar
  32. 32.
    W. Kuchle, M. Dolg, H. Stoll, H. Preuss, J. Chem. Phys. 100, 7535 (1994).  https://doi.org/10.1063/1.466847 CrossRefGoogle Scholar
  33. 33.
    P. Yang, I. Warnke, R.L. Martin, P.J. Hay, Organometallics. 27, 1384 (2008).  https://doi.org/10.1021/om700927n CrossRefGoogle Scholar
  34. 34.
    X. Cao, M. Dolg, Coord. Chem. Rev. 250, 900 (2006).  https://doi.org/10.1016/j.ccr.2006.01.003 CrossRefGoogle Scholar
  35. 35.
    M.C. Michelini, N. Russoand, E. Sicilia, J. Am. Chem. Soc. 129, 4229 (2007).  https://doi.org/10.1021/ja065683i CrossRefGoogle Scholar
  36. 36.
    G. Mazzone, M.C. Michelini, N. Russon, E. Sicilia, Inorg. Chem. 47, 2083 (2008).  https://doi.org/10.1021/ic701789n CrossRefGoogle Scholar
  37. 37.
    J.T. Lyon, L. Andrws, eP.-A. Malmqvist, B.O. Roos, T. Yang, B.E. Bursten, Inorg. Chem. 46, 4917 (2007).  https://doi.org/10.1021/ic062407w CrossRefGoogle Scholar
  38. 38.
    K. Fukui, J. Phys. Chem. 74, 4161 (1970)CrossRefGoogle Scholar
  39. 39.
    L. Gagliardi, B.O. Roos, P.A. Malmqvis, J.M. Dyke, J. Phys. Chem. A 105, 10602 (2001).  https://doi.org/10.1021/jp012888z CrossRefGoogle Scholar
  40. 40.
    T. Lu, F. Chen, J. Comput. Chem. 33, 580 (2012).  https://doi.org/10.1002/jcc.22885 CrossRefGoogle Scholar
  41. 41.
    A.D. Becke, K.E. Edgecombe, J. Chem. Phys. 92, 5397 (1990).  https://doi.org/10.1063/1.458517 CrossRefGoogle Scholar
  42. 42.
    A. Savin, R. Nesper, S. Wengert, T.R. Fassler, Angew. Chem. Int. Ed. Engl. 36, 1808 (1997).  https://doi.org/10.1002/anie.199718081 CrossRefGoogle Scholar
  43. 43.
    J.G. Małecki, Polyhedron. 29, 1973 (2010).  https://doi.org/10.1016/j.poly.2010.03.015 CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2019

Authors and Affiliations

  • Wenlang Luo
    • 1
    Email author
  • Qingqing Wang
    • 2
  • Xiaoli Wang
    • 3
  • Tao Gao
    • 2
  1. 1.School of Electronics and Information EngineeringJinggangshan UniversityJi’anChina
  2. 2.Institute of Atomic and Molecular PhysicsSichuan UniversityChengduChina
  3. 3.Institute of Nuclear Physics and ChemistryChina Academy of Engineering PhysicsMianyangChina

Personalised recommendations