Advertisement

Development of electrochemical sensor based on molecularly imprinted copolymer for detection of nitrofurantoin

  • Mahmoud Roushani
  • Zeinab Rahmati
Original Paper

Abstract

The present study aimed to identify and analyze how an imprinted molecularly sensor was used for a direct determination of nitrofurantoin (NFT). The polymerization was directly performed on the surface of glassy carbon electrode by m-dihydroxybenzene and o-aminophenol as monomers. In this regard, the most fundamental issue to be noticed was the special porous forms which, after being washed, were obtained for the NFT molecule. Accordingly, great selectivity and high sensitivity to detect NFT were observed. The proposed system showed good linearity ranging from 0.001 to 0.05 and 0.1 to 1.0 µM, with a detection limit of 0.3 nM. Finally, it should also be noted that the proposed sensor was very selective and sensitive for the detection of NFT in the real serum samples.

Keyword

Molecularly imprinted polymer Electrochemical sensor Electropolymerization Nitrofurantoin 

Notes

Acknowledgements

This work was supported by the research facilities of Ilam University, Ilam, Iran.

References

  1. 1.
    P. Muth, R. Metz, B. Siems, W.W. Bolten, H. Vergin, J. Chromatogr. A 729, 251 (1996)CrossRefGoogle Scholar
  2. 2.
    L.A.P. Hoogenboom, M.V.A.N. Kammen, M.C.J. Berghmans, J.H. Koeman, H.A. Kuiper, Food Chem. Toxicol. 29, 321 (1991)CrossRefGoogle Scholar
  3. 3.
    A.S. Pereira, L.C. Pampana, J.L. Donato, G. De Nucci, Anal. Chim. Acta 514, 9 (2004)CrossRefGoogle Scholar
  4. 4.
    S.M. Hassan, F. Belal, M.K.S. El-Din, M. Sultan, Anal. Lett. 21, 1199 (1988)CrossRefGoogle Scholar
  5. 5.
    U. Athikomrattanakul, M. Katterle, N. Gajovic-Eichelmann, F.W. Scheller, Biosens. Bioelectron. 25, 82 (2009)CrossRefGoogle Scholar
  6. 6.
    M. Poulou, P. Macheras, Int. J. Pharm. 34, 29 (1986)CrossRefGoogle Scholar
  7. 7.
    R. Fernando, D.M.S. Munasinghe, A.R.C. Gunasena, P. Abeynayake, Food Control 72, 300 (2017)CrossRefGoogle Scholar
  8. 8.
    P. Thongsrisomboon, B. Liawruangrath, S. Liawruangrath, S. Satienperakul, Food Chem. 123, 834 (2010)CrossRefGoogle Scholar
  9. 9.
    G.G. Parra, L.P. Ferreira, D.C.K. Codognato, C.C.S. Cavalheiro, I. Borissevitch, J. Lumin. 185, 10 (2017)CrossRefGoogle Scholar
  10. 10.
    Y. Wang, T. Chen, Q. Zhuang, Y. Ni, Talanta 179, 409 (2018)CrossRefGoogle Scholar
  11. 11.
    Y. Zhang, H. Qiao, C. Chen, Z. Wang, X. Xia, Food Chem. 192, 612 (2016)CrossRefGoogle Scholar
  12. 12.
    H. Roseboom, H.A. Koster, Anal. Chim. Acta 101, 359 (1978)CrossRefGoogle Scholar
  13. 13.
    P. de Lima-Neto, A.N. Correia, R.R. Portela, M. da S. Julião, G.F. Linhares-Junior, J.E.S. de Lima, Talanta 80, 1730 (2010)CrossRefGoogle Scholar
  14. 14.
    R. Jain, A. Dwivedi, R. Mishra, J. Hazard. Mater. 169, 667 (2009)CrossRefGoogle Scholar
  15. 15.
    D. Dechtrirat, P. Yingyuad, P. Prajongtat, L. Chuenchom, C. Sriprachuabwong, A. Tuantranont, I.-M. Tang, Microchim. Acta 185, 1 (2018)CrossRefGoogle Scholar
  16. 16.
    G. Aydoğdu, G. Günendi, D.K. Zeybek, B. Zeybek, Ş Pekyardımcı, Sens. Actuators B Chem. 197, 211 (2014)CrossRefGoogle Scholar
  17. 17.
    X.C. Tan, J.D. Qiu, Y. Li, X.Y. Zou, P.X. Cai, Chin. J. Anal. Chem. 32, 930 (2004)Google Scholar
  18. 18.
    Z. Krejčová, J. Barek, V. Vyskočil, Electroanalysis 27, 185 (2015)CrossRefGoogle Scholar
  19. 19.
    A. Aghaei, M.R. Milani, Hosseini, M. Najafi, Electrochim. Acta 55, 1503 (2010)CrossRefGoogle Scholar
  20. 20.
    S. Hossein, H. Massoud, K. Fatemeh, J. Iran. Chem. Soc. 13, 733 (2016)CrossRefGoogle Scholar
  21. 21.
    L.-L. Wu, R.-P. Liang, J. Chen, J.-D. Qiu, Electrophoresis 39, 5 (2018)Google Scholar
  22. 22.
    R. Schirhagl, in Synthetic Antibodies (Springer, Berlin, 2017), pp. 325–340Google Scholar
  23. 23.
    E. Abdollahi, A. Khalafi-Nezhad, A. Mohammadi, M. Abdouss, M. Salami-Kalajahi, Polymer 143, 245 (2018)CrossRefGoogle Scholar
  24. 24.
    G. Marcelo, I.C. Ferreira, R. Viveiros, T. Casimiro, Int. J. Pharm. 542, 125 (2018)CrossRefGoogle Scholar
  25. 25.
    S.M. Sorouraddin, M.R.A. Mogaddam, J. Iran. Chem. Soc. 13, 1093 (2016)CrossRefGoogle Scholar
  26. 26.
    R. Gui, H. Jin, H. Guo, Z. Wang, Biosens. Bioelectron. 100, 56 (2018)CrossRefGoogle Scholar
  27. 27.
    D. Chen, J. Deng, J. Liang, J. Xie, C. Hu, K. Huang, Sens. Actuators B Chem. 183, 594 (2013)CrossRefGoogle Scholar
  28. 28.
    N. Karimian, M.B. Gholivand, F. Taherkhani, J. Electroanal. Chem. 740, 45 (2015)CrossRefGoogle Scholar
  29. 29.
    H. Peng, C. Liang, A. Zhou, Y. Zhang, Q. Xie, S. Yao, Anal. Chim. Acta 423, 221 (2000)CrossRefGoogle Scholar
  30. 30.
    P. Liu, X. Zhang, W. Xu, C. Guo, S. Wang, Sens. Actuators B Chem. 163, 84 (2012)CrossRefGoogle Scholar
  31. 31.
    X. Qiu, Y. Li, C. Peng, J. Instrum. Anal. 3, 14 (2018)Google Scholar
  32. 32.
    P. Salgado-Figueroa, P. Jara-Ulloa, A. Alvarez-Lueje, J.A. Squella, Electroanalysis 25, 1433 (2013)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2019

Authors and Affiliations

  1. 1.Department of ChemistryIlam UniversityIlamIran

Personalised recommendations