Modeling and optimization of characterization of nanostructure anodized aluminium oxide membranes

  • Hamed AzamiEmail author
  • Mohammad Reza Omidkhah
Original Paper


This study indicates the importance of statistical analysis and modeling to investigate the synthesis and optimization of anodized aluminium oxide (AAO) properties for template-assisted synthesis of nanostructure particles. The response surface methodology was used to optimize pore size and porosity of AAO. The impacts of four main parameters including type of acidic electrolyte, concentration of acid, bath temperature and electrical potential of anodization on characterization of AAO were investigated. Statistical analysis showed that the linear and quadratic terms of these variables had significant effects. Based on the statistical analysis, a possible mechanism of the anodization was proposed. The proposed mechanism helped us to develop an analytical model. The analytical model could predict the experimental results with an appropriate accuracy. Results indicated the rate-limiting reaction in anodization process is water dissociation which was conducted at the pore bottom of the AAO. In addition, concentrated electrical field at pore base induced water splitting so that the activation energy of water dissociation decreased ten times and reached to \(9898.5~\frac{{\text{J}}}{{{\text{mol}}}}\).

Graphical abstract


Anodized aluminium oxide Nanoporous materials Electrochemical synthesis Pore perforation Statistical analysis 



This study was supported by Iranian National Science Foundation (INSF) (Grant no: 92000914). The authors gratefully acknowledge this support.

Supplementary material

13738_2018_1574_MOESM1_ESM.pdf (317 kb)
Supplementary material 1 (PDF 316 KB)
13738_2018_1574_MOESM2_ESM.docx (23 kb)
Supplementary material 2 (DOCX 22 KB)
13738_2018_1574_MOESM3_ESM.docx (26 kb)
Supplementary material 3 (DOCX 26 KB)


  1. 1.
    M. Brust. D.J. Schiffrin. D. Bethell, C.J. Kiely, Adv. Mater. 7, 795 (1995)CrossRefGoogle Scholar
  2. 2.
    J. Varghese. R.W. Whatmore, J.D. Holmes, J. Mater. Chem. C 1, 2618 (2013)CrossRefGoogle Scholar
  3. 3.
    H. Abbasian. D. Ghanbari, G. Nabiyouni, J. Nano-Struct. 3, 429 (2013)Google Scholar
  4. 4.
    N. Gilani. J. Towfighi. A. Rashidi. T. Mohammadi. M.R. Omidkhaha, A. Sadeghian, Appl. Surf. Sci. 270, 115 (2013)CrossRefGoogle Scholar
  5. 5.
    S. Wu. F. Wildhaber. O. Vazquez-Mena. A. Bertsch. J. Brugger, P. Renaud, Nanoscale 4, 5718 (2012)CrossRefGoogle Scholar
  6. 6.
    H. Kazemi. K. Zandi, H. Momenian, J. Nano-Struct. 5, 25 (2015)Google Scholar
  7. 7.
    H. Azami, M.R. Omidkhah, Can. J. Chem. Eng. 95, 307 (2017)CrossRefGoogle Scholar
  8. 8.
    Y. Song. W. Yin. C. Fernandes, H.E. Rudab, Thin Solid Films 548, 130 (2013)CrossRefGoogle Scholar
  9. 9.
    K. Aisu. M. Osada, Y. Suzuki, J. Mater. Sci. Nanotechnol. 1, 1 (2014)Google Scholar
  10. 10.
    M. Wang. X. Ye, J. Feng, Micro Nano Lett. 8, 713 (2013)CrossRefGoogle Scholar
  11. 11.
    A.M. Md Jani. D. Losic, N.H. Voelcker, Prog. Mater Sci. 58, 636 (2013)CrossRefGoogle Scholar
  12. 12.
    S. Yue. Z. Yan. Y. Shi, G. Ran, Mater. Lett. 98, 246 (2013)CrossRefGoogle Scholar
  13. 13.
    A.L. Friedman. D. Brittain, L. Menon, J. Chem. Phys. 127, 54717 (2007)CrossRefGoogle Scholar
  14. 14.
    A. Belwalkar. E. Grasing, W. Van Geertruyden, J. Membr. Sci. 319, 192 (2008)CrossRefGoogle Scholar
  15. 15.
    L. Zaraska. W.J. Stępniowski. E. Ciepiela, G.D. Sulka, Thin Solid Films 534, 155 (2013)CrossRefGoogle Scholar
  16. 16.
    J.M. Montero-Moreno. M. Sarret, C. Müller, Surf. Coat. Technol. 201, 6352 (2007)CrossRefGoogle Scholar
  17. 17.
    J.M. Montero-Moreno. M. Sarret, C. Müller, J. Electrochem. Soc. 154, C169 (2007)CrossRefGoogle Scholar
  18. 18.
    G.D. Sulka, K. Parkola, Thin Solid Films 515, 338 (2006)CrossRefGoogle Scholar
  19. 19.
    S. Shingubara, J. Nanopart. Res. 5, 17 (2003)CrossRefGoogle Scholar
  20. 20.
    G. Sulka, W. Stepniowski, Electrochim. Acta 54, 83 (2009)CrossRefGoogle Scholar
  21. 21.
    R. Akolakar. U. Landau. H. Kuo, Y.M. Wang, J. Appl. Electrochem. 34, 807 (2004)CrossRefGoogle Scholar
  22. 22.
    K.P. Lee, D. Mattia, Ind. Eng. Chem. Res. 52, 14866 (2013)CrossRefGoogle Scholar
  23. 23.
    X. He, M.B. Hägg, Ind. Eng. Chem. Res. 50, 8065 (2011)CrossRefGoogle Scholar
  24. 24.
    M. Essalhi. M. Khayet. C. Cojocaru., M.C. García-Payo, P. Arribas, Open Nanosci. J. 7, 8 (2013)CrossRefGoogle Scholar
  25. 25.
    N. Gilani. J. Towfighi Daryan. A. Rashidi, M.R. Omidkhah, Appl. Surf. Sci. 258, 4819 (2012)CrossRefGoogle Scholar
  26. 26.
    A. Ebrahimpour, R.N.Z. Raja Abd Rahman, D. Hooi Ean Ch’ng, M. Basri, A.B. Salleh, BMC Biotechnol. 8, 1 (2008)CrossRefGoogle Scholar
  27. 27.
    N. Parvin, A. Doryab, J. Powder Metall. Min. 2, 1 (2013)CrossRefGoogle Scholar
  28. 28.
    M.A. Bezerra., R.E. Santelli, E.P. Oliveira, L.S. Villar, L.A.l. Escaleira, Talanta 76, 965 (2008)CrossRefGoogle Scholar
  29. 29.
    H. Azami, M.R. Omidkhah, 5th International Congress on Nanoscience & Nanotechnology (ICNN2014), Tehran, Iran (2014)Google Scholar
  30. 30.
    S. Ono. M. Saito, H. Asoh, Electrochem. Solid State Lett. 7, B21 (2004)CrossRefGoogle Scholar
  31. 31.
    H.E. Darling, J. Chem. Eng. Data 9, 421 (1964)CrossRefGoogle Scholar
  32. 32.
    K. Krynicki. C.D. Green, D.W. Sawyer, Faraday Discuss. 66, 199 (1979)CrossRefGoogle Scholar
  33. 33.
    F. Li, Chemical & Materials Engineering (University of Alabama, Alabama, 1998)Google Scholar
  34. 34.
    M. Mourabet. A. El Rhilassi, H. El Boujaady, M. Bennani-Ziatni, A. Taitai, Arab. J. Chem. 10, S3292 (2017)CrossRefGoogle Scholar
  35. 35.
    M. Whelan. K. Barton., J. Cassidy. J. Colreavy, B. Duffy, Surf. Coat. Technol. 227, 75 (2013)CrossRefGoogle Scholar
  36. 36.
    M.W. Liao, C.K. Chung, Corros. Sci. 74, 232 (2013)CrossRefGoogle Scholar
  37. 37.
    J.P. O’Sullivan, G.C. Wood, Proc. R. Soc. A 317, 511 (1970)CrossRefGoogle Scholar
  38. 38.
    J.P. O’Sullivan, Institute of Science and Technology, University of Manchester, Manchester (1968)Google Scholar
  39. 39.
    F. Li. L. Zhang, R.M. Metzger, Chem. Mater. 10, 2470 (1998)CrossRefGoogle Scholar
  40. 40.
    J.J. Schneider, J. Engstler, Eur. J. Inorg. Chem. 2006, 1723 (2006)CrossRefGoogle Scholar
  41. 41.
    H.-y. Sun, H.-m. Zhang, X. Hou, L.-h. Liu, T.-s. Wu, S.-m. Yang, J. Mater. Chem. C 1, 3569 (2013)CrossRefGoogle Scholar
  42. 42.
    R.H. Myers. D.C. Montgomery, C.M. Anderson-Cook, Response Surface Methodology: Process and Product Optimization Using Designed Experiments (Wiley, Hoboken, 2009)Google Scholar
  43. 43.
    K.R. Hebert., S.P. Albu. I. Paramasivam, P. Schmuki, Nat. Mater. 11, 162 (2012)CrossRefGoogle Scholar
  44. 44.
    P.G. Miney., P.E. Colavita., M.V. Schiza., R.J. Priore. F.G. Haibach, M.L. Myrick, Electrochem. Solid State Lett. 6, B42 (2003)CrossRefGoogle Scholar
  45. 45.
    M. Wang. Y. Liu, H. Yang, Electrochim. Acta 62, 424 (2012)CrossRefGoogle Scholar
  46. 46.
    A.T. Shawaqfeh, R.E. Baltus, Fabrication and characterization of single layer and muti-layer anodic alumina membrane. J. Membr. Sci. 157, 147–158 (1999)CrossRefGoogle Scholar
  47. 47.
    T. Valand, K.E. Heusler, J. Electroanal. Chem. Interfacial Electrochem. 149, 71 (1983)CrossRefGoogle Scholar
  48. 48.
    A. Mohsenzadeh. A. Borjesson., J.-H. Wang. T. Richards, K. Bolton, Int. J. Mol. Sci. 14, 23301 (2013)CrossRefGoogle Scholar
  49. 49.
    C.C. Agrafiotis. C. Pagkoura. S. Lorentzou. M. Kostoglou, A.G. Konstandopoulos, Catal. Today 127, 265 (2007)CrossRefGoogle Scholar
  50. 50.
    P.L. Geissler., C. Dellago. D. Chandler. J. Hutter, M. Parrinello, Science 291, 2121 (2001)CrossRefGoogle Scholar
  51. 51.
    J.H. Yuan., W. Chen., R.J. Hui. Y.L. Hu, X.H. Xia, Electrochim. Acta 51, 4589 (2006)CrossRefGoogle Scholar
  52. 52.
    J.I. Sohn., Y.-S. Kim., C. Nam. B.K. Cho, T.-Y. Seong, Appl. Phys. Lett. 87, 123115 (2005)CrossRefGoogle Scholar
  53. 53.
    Y.C. Choi., J.Y. Hyeon, S.D. Bu, J. Korean Phys. Soc. 55, 835 (2009)CrossRefGoogle Scholar
  54. 54.
    X. Zhao. S.-K. Seo., U.-J. Lee, K.-H. Lee, J. Electrochem. Soc. 154, C553 (2007)CrossRefGoogle Scholar
  55. 55.
    T. Kyotani. W. Xu. Y. Yokoyama., J. Inahara. H. Touhara, A. Tomita, J. Membr. Sci. 196, 231 (2002)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2019

Authors and Affiliations

  1. 1.Department of Chemical Engineering, Faculty of EngineeringUniversity of BojnordBojnordIran
  2. 2.Department of Chemical EngineeringTarbiat Modares UniversityTehranIran

Personalised recommendations