Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Promotion effect of nickel for Cu–Ni/γ-Al2O3 catalysts in the transfer dehydrogenation of primary aliphatic alcohols

Abstract

Cu–Ni/γ-Al2O3 bimetallic catalysts were developed for anaerobic dehydrogenation of non-activated primary aliphatic alcohols to aldehydes. Systematic investigation about the promotion effect of nickel on the catalytic performance was carried out. Hydrogenation of C=C bond rather than C=O bond, was significantly improved over Cu–Ni/γ-Al2O3 catalyst by introducing nickel, which interprets the good conversion of primary aliphatic alcohols. This work would contribute to design new catalysts for dehydrogenation of primary aliphatic alcohols.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Scheme 2
Fig. 7
Fig. 8

References

  1. 1.

    T. Matsumoto, M. Ueno, N. Wang, S. Kobayashi, Chem. Asian J. 3, 196–214 (2008)

  2. 2.

    S.E. Davis, M.S. Ide, R.J. Davis, Green Chem. 15, 17–45 (2013)

  3. 3.

    C. Parmeggiani, F. Cardona, Green Chem. 14, 547–564 (2012)

  4. 4.

    F. Sadri, A. Ramazani, A. Massoudi, M. Khoobi, R. Tarasi, A. Shafiee, V. Azizkhani, L. Dolatyari, S.W. Joo, Green Chem. Lett. Rev. 7, 257–264 (2014)

  5. 5.

    F. Sadri, A. Ramazani, A. Massoudi, M. Khoobi, V. Azizkhani, R. Tarasi, L. Dolatyari, B.-K. Min, Bull. Korean Chem. Soc. 35, 2029–2032 (2014)

  6. 6.

    F. Sadri, A. Ramazani, A. Massoudi, M. Khoobi, S.W. Joo, Bulg. Chem. Commun. 47, 539–546 (2015)

  7. 7.

    A. Ramazani, F. Sadri, A. Massoudi, M. Khoobi, S.W. Joo, L. Dolatyari, N. Dayyani, Iran. J. Catal. 5, 285–291 (2015)

  8. 8.

    I. Gandarias, P.J. Miedziak, E. Nowicka, M. Douthwaite, D.J. Morgan, G.J. Hutchings, S.H. Taylor, ChemSusChem 8, 473–480 (2015)

  9. 9.

    T. Osako, K. Torii, Y. Uozumi, RSC Adv. 5, 2647–2654 (2015)

  10. 10.

    D. Sahu, A.R. Silva, P. Das, RSC Adv. 5, 78553–78560 (2015)

  11. 11.

    K. Kaizuka, H. Miyamura, S. Kobayashi, J. Am. Chem. Soc. 132, 15096–15098 (2010)

  12. 12.

    T. Ishida, Y. Ogihara, H. Ohashi, T. Akita, T. Honma, H. Oji, M. Haruta, ChemSusChem 5, 2243–2248 (2012)

  13. 13.

    T. Lu, Z. Du, J. Liu, H. Ma, J. Xu, Green Chem. 15, 2215–2221 (2013)

  14. 14.

    M. Nolan, J. Chem. Phys. 139, 184710 (2013)

  15. 15.

    K. Shimizu, K. Sugino, K. Sawabe, A. Satsuma, Chem. Eur. J. 15, 2341–2351 (2009)

  16. 16.

    T. Mitsudome, Y. Mikami, H. Funai, T. Mizugaki, K. Jitsukawa, K. Kaneda, Angew. Chem. Int. Ed. 47, 138–141 (2008)

  17. 17.

    K. Shimizu, K. Kon, M. Seto, K. Shimura, H. Yamazaki, J.N. Kondo, Green Chem. 15, 418–424 (2013)

  18. 18.

    F. Zaccheria, N. Ravasio, R. Psaro, A. Fusi, Chem. Commun. 41, 253–255 (2005)

  19. 19.

    F. Zaccheria, N. Ravasio, R. Psaro, A. Fusi, Chem. Eur. J. 12, 6426–6431 (2006)

  20. 20.

    T. Mitsudome, Y. Mikami, K. Ebata, T. Mizugaki, K. Jitsukawa, K. Kaneda, Chem. Commun. 44, 4804–4806 (2008)

  21. 21.

    G. Bai, Y. Wang, F. Li, Z. Zhao, G. Chen, N. Li, X. Han, Catal. Lett. 143, 101–107 (2013)

  22. 22.

    C. Keresszegi, T. Mallat, A. Baiker, N. J. Chem. 25, 1163–1167 (2001)

  23. 23.

    K. Fujita, T. Uejima, R. Yamaguchi, Chem. Lett. 42, 1496–1498 (2013)

  24. 24.

    R. Shi, F. Wang, L.Y. Tana, X. Huang, W. Shen, Green Chem. 12, 108–113 (2010)

  25. 25.

    F. Wang, R. Shi, Z.-Q. Liu, P.-J. Shang, X. Pang, S. Shen, Z. Feng, C. Li, W. Shen, ACS Catal. 3, 890–894 (2013)

  26. 26.

    R.K. Marella, C.K.P. Neeli, S.R.R. Kamaraju, D.R. Burri, Catal. Sci. Technol. 2, 1833–1838 (2012)

  27. 27.

    J. Requies, M.B. Güemez, A. Iriondo, V.L. Barrio, J.F. Cambra, P.L. Arias, Catal. Lett. 142, 50–59 (2012)

  28. 28.

    P. Maki-Arvela, L.P. Tiainen, M. Lindblad, K. Demirkan, N. Kumar, R. Sjoholm, T. Ollonqvist, J. Vayrynen, T. Salmi, D.Y. Murzin, Appl. Catal. A Gen. 241, 271–288 (2003)

  29. 29.

    S.J. Chiang, C.H. Yang, Y.Z. Chen, B.J. Liaw, Appl. Catal. A Gen. 326, 180–188 (2007)

  30. 30.

    L.P. Tiainen, P. Maki-Arvela, T. Salmi, Catal. Today 48, 57–63 (1999)

  31. 31.

    N. Mahata, A.F. Cunha, J.J.M. Órfão, J.L. Figueiredo, Chem. Eng. J. 188, 155–159 (2012)

  32. 32.

    P. Li, J. Liu, N. Nag, P.A. Crozier, J. Catal. 262, 73–82 (2009)

  33. 33.

    A.Y. Yin, C. Wen, X.Y. Guo, W.L. Dai, K.N.A. Fan, J. Catal. 280, 77–88 (2011)

  34. 34.

    A.R. Naghash, T.H. Etsell, S. Xu, Chem. Mater. 18, 2480–2488 (2006)

  35. 35.

    L.-C. Chen, S.D. Lin, Appl. Catal. B Environ. 106, 639–649 (2011)

  36. 36.

    T. Lu, Z. Du, J. Liu, C. Chen, J. Xu, Chin. J. Catal. 35, 1911–1916 (2014)

  37. 37.

    C. Nofre, J.-M. Tinti, Food Chem. 69, 245–257 (2000)

  38. 38.

    F. Corvaisier, Y. Schuurman, A. Fecant, C. Thomazeau, P. Raybaud, H. Toulhoat, D. Farrusseng, J. Catal. 307, 352–361 (2013)

  39. 39.

    Y. Yang, Z. Du, Y. Huang, F. Lu, F. Wang, J. Gao, J. Xu, Green Chem. 15, 1932–1940 (2013)

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant: U1304209), the Key Scientific Research Projects for University in Henan Province (16A530009) and the Foundation for University Young Key Teacher by Henan Province (Grant: 2014GGJS-005).

Author information

Correspondence to Tianliang Lu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Fu, X., Bu, N. et al. Promotion effect of nickel for Cu–Ni/γ-Al2O3 catalysts in the transfer dehydrogenation of primary aliphatic alcohols. J IRAN CHEM SOC 14, 111–119 (2017). https://doi.org/10.1007/s13738-016-0963-2

Download citation

Keywords

  • Heterogeneous catalysis
  • Alcohols
  • Dehydrogenation