Journal of the Iranian Chemical Society

, Volume 13, Issue 6, pp 1027–1035 | Cite as

Copper hydroxide nanostructure-modified carbon ionic liquid electrode as an efficient voltammetric sensor for detection of metformin: a theoretical and experimental study

  • S. MomeniEmail author
  • M. Farrokhnia
  • S. Karimi
  • I. Nabipour
Original Paper


The electrocatalytic oxidation of metformin (MET) was investigated at Cu(OH)2 nanoparticle-modified carbon ionic liquid electrode (Cu(OH)2/CILE). This electrode exhibited excellent characteristic for the electrocatalytic oxidation of metformin at the potential of +0.6 V with good sensitivity and selectivity. The presence of Cu(OH)2 nanostructures in the composite electrode leads to the appearance of oxidation peak of MET. Under optimal experimental conditions, the peak current response increased linearly with metformin concentration over the range of 1 µM–4 mM. The detection limit of the method is 0.5 µM. Moreover, the closer look was taken at the electronic properties of MET and its Cu (II) complexes such as frontier molecular orbital (HOMO and LUMO) and binding interaction energies using density functional theory. Effect of pH was also investigated at B3LYP/6-311++g** level. Theoretical results confirmed the experimental evidences of Cu (II) complexation. Therefore, Ease of preparation, wide linear range, low overpotential, high sensitivity and selectivity provide the possibility of applying this method for the detection of MET in biological samples.


Cu(OH)2 nanoparticles Carbon ionic liquid electrode Metformin Sensor HOMO and LUMO 


  1. 1.
    G. Danaei, M.M. Finucane, Y. Lu, G.M. Singh, M.J. Cowan, C.J. Paciorek, J.K. Lin, F. Farzadfar, Y.H. Khang, G.A. Stevens, M. Rao, M.K. Ali, L.M. Riley, C.A. Robinson, M. Ezzati, Global burden of metabolic risk factors of chronic diseases collaborating group (blood glucose). Lancet 378, 31 (2011)CrossRefGoogle Scholar
  2. 2.
    S. van Dieren, J.W. Beulens, Y.T. van der Schouw, D.E. Grobbee, B. Neal, Eur. J. Cariovasc. Prev. Rehabil. 17, S3 (2010)CrossRefGoogle Scholar
  3. 3.
    E. Ferrannini, A. Mari, Metabolism 63, 1217 (2014)CrossRefGoogle Scholar
  4. 4.
    C.R. Thomas, S.L. Turner, W.H. Jefferson, C.J. Bailey, Biochem. Pharmacol. 56, 1145 (1998)CrossRefGoogle Scholar
  5. 5.
    S.M. Abu-El-Wafa, M.A. El-Ries, F.H. Ahmed, Inorg. Chim. Acta 136, 127 (1987)CrossRefGoogle Scholar
  6. 6.
    F.A. Al-Saif, M.S. Refat, J. Therm. Anal. Calorim. 111, 2079 (2013)CrossRefGoogle Scholar
  7. 7.
    M.S. Lennard, C. Casey, G.T. Tucker, H.F. Woods, Brit. J. Clin. Pharmaco. 6, 183 (1978)CrossRefGoogle Scholar
  8. 8.
    E. Uçaktürk, Anal. Methods 5, 4723 (2013)CrossRefGoogle Scholar
  9. 9.
    J.-Z. Song, H.-F. Chen, S.-J. Tian, Z.-P. Sun, J. Chromatogr. B 708, 277 (1998)CrossRefGoogle Scholar
  10. 10.
    J.M. Calatayud, P.C. Falco, M.C. Pascual, Martiy. Anal. Lett. 18, 1381 (1985)CrossRefGoogle Scholar
  11. 11.
    M.B. Gholivand, L. Mohammadi-Behzad, Anal. Biochem. 438, 53 (2013)CrossRefGoogle Scholar
  12. 12.
    S. Skrzypek, V. irčeski, W. Ciesielski, A. Sokołowski, R. Zakrzewski, J. Pharmaceut. Biomed. 45, 275 (2007)Google Scholar
  13. 13.
    X.-J. Tian, J.-F. Song J. Pharmaceut. Biomed. 44, 1192 (2007)Google Scholar
  14. 14.
    X.-J. Tian, J.-F. Song, X.-J. Luan, Y.-Y. Wang, Q.-Z. Shi, Anal. Bioanal. Chem. 386, 2081 (2006)CrossRefGoogle Scholar
  15. 15.
    N. Sattarahmady, H. Heli, F. Faramarzi, Talanta 82, 1126 (2010)CrossRefGoogle Scholar
  16. 16.
    E. Roy, S. Patra, R. Madhuri, P.K. Sharma, Talanta 120, 198 (2014)CrossRefGoogle Scholar
  17. 17.
    D. Brocks, R.Q. Gabr, R.S. Padwal, J. Pharm. Pharm. Sci. 13, 486 (2010)Google Scholar
  18. 18.
    M.A.S. Marques, A.D.S. Soares, O.W. Pinto, P.T.W. Barroso, D.P. Pinto, M. Ferreira-Filho, E. Werneck-Barroso, J. Chromatogr. B 852, 308 (2007)CrossRefGoogle Scholar
  19. 19.
    S.Y. Feng, E.P.C. Lai, E. Dabek-Zlotorzynska, S. Sadeghi, J. Chromatogr. A 1027, 155 (2004)CrossRefGoogle Scholar
  20. 20.
    S. Ashour, R. Kabbani, Anal. Lett. 36, 361 (2003)CrossRefGoogle Scholar
  21. 21.
    I.H.I. Habib, M.S. Kamel, Talanta 60, 185 (2003)CrossRefGoogle Scholar
  22. 22.
    S.Z. El-Khateeb, H.N. Assaad, M.G. El-Bardicy, A.S. Ahmad, Anal. Chim. Acta 208, 321 (1988)CrossRefGoogle Scholar
  23. 23.
    O. Vesterqvist, F. Nabbie, B. Swanson, J. Chromatogr. B 716, 299 (1998)CrossRefGoogle Scholar
  24. 24.
    K.H. Yuen, K.K. Peh, J. Chromatogr. B 710, 243 (1998)CrossRefGoogle Scholar
  25. 25.
    N.C. Van de Merbel, G. Wilkens, S. Fowles, B. Osterhuis, J.H.G. Jonkman, Chromatographia 47, 542 (1998)CrossRefGoogle Scholar
  26. 26.
    S. Majdi, A. Jabbari, H. Heli, H. Yadegari, A.A. Moosavi-Movahedi, S. Haghgoo, J. Solid State Electrochem. 13, 407 (2009)CrossRefGoogle Scholar
  27. 27.
    S. Skrzypek, V. Mirceski, W. Ciesielski, A. Sokolowski, R. Zakrzewski, J. Pharm. Biomed. Anal. 45, 275 (2007)CrossRefGoogle Scholar
  28. 28.
    N. Maleki, A. Safavi, F. Tajabadi, Anal. Chem. 78, 3820 (2006)CrossRefGoogle Scholar
  29. 29.
    A. Safavi, N. Maleki, E. Farjami, Biosens. Bioelectron. 24, 1655 (2009)CrossRefGoogle Scholar
  30. 30.
    A. Safavi, N. Maleki, E. Farjami, F. Aghakhani Mahyari, Anal. Chem. 81, 7538 (2009)CrossRefGoogle Scholar
  31. 31.
    A. Safavi, N. Maleki, E. Farjami, Electroanalysis 21, 1533 (2009)CrossRefGoogle Scholar
  32. 32.
    A. Safavi, S. Momeni, Electroanalysis 22, 2848 (2010)CrossRefGoogle Scholar
  33. 33.
    A.D. Becke, J. Chem. Phys. 98, 5648 (1993)CrossRefGoogle Scholar
  34. 34.
    C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)CrossRefGoogle Scholar
  35. 35.
    M.J. Frisch, et al, Gaussian03, Revision D.01, Gaussian, Inc, Wallingford, CT (2004)Google Scholar
  36. 36.
    R.G. Pearson, Proc. Natl. Acad. Sci. USA 83, 8440 (1986)CrossRefGoogle Scholar
  37. 37.
    R.G. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford University Press, New York, 1989)Google Scholar
  38. 38.
    P.W. Ayers, R.G. Parr, R.G. Pearson, J. Chem. Phys. 124, 194107 (2006)CrossRefGoogle Scholar
  39. 39.
    R.G. Pearson, Inorg. Chim. Acta 240, 93 (1995)CrossRefGoogle Scholar
  40. 40.
    R.G. Pearson Chemical hardness: Applications from molecules to solids, VCH-Wiley, Weinheim (1997)Google Scholar
  41. 41.
    T. Koopmans, Atoms Physica. 1, 104 (1934)Google Scholar
  42. 42.
    W. Yang, R.G. Parr, Proc. Natl. Acad. Sci. U.S.A. 82, 6723 (1985)CrossRefGoogle Scholar
  43. 43.
    S.-H. Park, Y.-J. Lee, Y.-D. Huh, Chem. Commun. 47, 11763 (2011)CrossRefGoogle Scholar
  44. 44.
    A.M. Awwad, B. Albiss, Adv. Mater. Lett. 6, 51–54 (2015)Google Scholar
  45. 45.
    P. Repi č k, S. Erhardt, G. Rena, M.J. Paterson, Biochemistry 53, 787 (2014)Google Scholar
  46. 46.
    E.D. Glendening, A.E. Reed, J.E. Carpenter, F. Weinhold, NBO, version 3.1Google Scholar

Copyright information

© Iranian Chemical Society 2016

Authors and Affiliations

  • S. Momeni
    • 1
    Email author
  • M. Farrokhnia
    • 1
  • S. Karimi
    • 2
  • I. Nabipour
    • 1
  1. 1.Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research InstituteBushehr University of Medical SciencesBushehrIran
  2. 2.Department of Chemistry, Faculty of SciencesPersian Gulf UniversityBushehrIran

Personalised recommendations