Journal of the Iranian Chemical Society

, Volume 13, Issue 2, pp 299–305 | Cite as

Impact of heating mode in synthesis of monodisperse iron-oxide nanoparticles via oleate decomposition

  • Alexey Stepanov
  • Asiya Mustafina
  • Rafael G. Mendes
  • Mark H. Rümmeli
  • Thomas Gemming
  • Elena Popova
  • Irek Nizameev
  • Marsil Kadirov
Original Paper


The present work introduces the optimization of a synthetic procedure for oleate-coated iron-oxide nanoparticles by the thermal decomposition of Fe oleate dried at 30 and 70 °C in high-boiling organic solvents. The attention is focused on the temperature of the thermal decomposition, the nature of organic solvent, heating rate and the mode of the heating. In particular, heating on Wood alloy with simultaneous bubbling of argon through the reaction mixture versus the heating on mantel with magnetic stirring is highlighted as a route to improve the monodispersity of the nanoparticles. The effect of heating mode and rate on the nanoparticles size is estimated. The obtained tendencies point to the heating mode and rate as additional factors affecting the kinetic separation between nucleation and nanoparticle growth processes.

Graphical Abstract


Iron oxide Nanoparticles Nanotechnology Nucleation Nanomaterials Monodispersity 



We are very thankful to Russian Fund for Basic Research (Project Number 13-03-12436_ofi_M2) for financial support. Mark H. Rümmeli thanks the IBS Korea (IBS-RO11-D1). Microscopic investigations for 1C sample were carried out in the laboratory “Transmission electron microscopy” of Kazan National Research Technological University. Electron microscopy characterization of 1D sample was performed in the Department of Structural Studies of Zelinsky Institute of Organic Chemistry, Moscow.


  1. 1.
    M. Halupka-Bryl, M. Bednarowicz, B. Dobozs, R. Krzyminiewski, T. Zalewski, B. Wereszczynska, G. Novaczyk, M. Jarek, Y. Nagasaki, Doxorubicin loaded PEG-b-poly(4-vinylbenzylphosphonate) coated magnetic iron oxide nanoparticles for targeted drug delivery. J. Magn. Magn. Mater. 384, 320–327 (2015)CrossRefGoogle Scholar
  2. 2.
    M. Talelli, C.J.F. Rijcken, T. Lammers, P.R. Seevinck, G. Storm, C.F. van Nostrum, W.E. Hennink, Superparamagnetic iron oxide nanoparticles encapsulated in biodegradable thermosensitive polymeric micelles: toward a targeted nanomedicine suitable for image-guided drug delivery. Langmuir 25, 2060–2067 (2009)CrossRefGoogle Scholar
  3. 3.
    M. Beygzadeh, M. Alizadeh, M.M. Khodaei, D. Kordestani, Biguanide/Pd(OAc)2 immobilized on magnetic nanoparticle as a recyclable catalyst for the heterogeneous Suzuki reaction in aqueous media. Catal. Commun. 32, 86–91 (2013)CrossRefGoogle Scholar
  4. 4.
    R.R. Shah, T.P. Davis, A.L. Glover, D.E. Nikles, C.S. Brazel, Impact of magnetic field parameters and iron oxide nanoparticle properties on heat generation for use in magnetic hyperthermia. J. Magn. Magn. Mater. 387, 96–106 (2015)CrossRefGoogle Scholar
  5. 5.
    G. Frolov, Film carriers for super-high-density magnetic storage. Tech. Phys. 12, 410–414 (2000)Google Scholar
  6. 6.
    M. Lewin, N. Carlesso, C.H. Tung, X.W. Tang, D. Cory, D.T. Scadden, R. Weissleder, Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat. Biotechnol. 18, 410–414 (2000)CrossRefGoogle Scholar
  7. 7.
    E. Amstad, S. Zurcher, A. Mashaghi, J.Y. Wong, M. Textor, E. Reimhult, Surface functionalization of single superparamagnetic iron oxide nanoparticles for targeted magnetic resonance imaging. Small 5, 1334–1342 (2009)CrossRefGoogle Scholar
  8. 8.
    D.G. You, G. Saravanakumar, S. Son, H.S. Han, R. Heo, K. Kim, I.C. Kwon, Y.G. Lee, J.H. Park, Dextran sulfate-coated superparamagnetic iron oxide nanoparticles as a contrast agent for atherosclerosis imaging. Carbohydr. Polym. 101, 1225–1233 (2014)CrossRefGoogle Scholar
  9. 9.
    M. Corti, A. Lascialfari, M. Marinone, A. Masotti, E. Micotti, F. Orsini, G. Ortaggi, G. Poletti, C. Innocenti, C. Sangregorio, Magnetic and relaxometric properties of polyethylenimine-coated superparamagnetic MRI contrast agents. J. Magn. Magn. Mater. 320, e316–e319 (2008)CrossRefGoogle Scholar
  10. 10.
    M. Branca, M. Marciello, D. Ciuculescu-Pradines, M. Respaud, del P.M. Morales, R. Serra, M.-J. Casanove, C. Amiens, Towards MRI T2 contrast agents of increased efficiency. J. Magn. Magn. Mater. 377, 348–353 (2015)CrossRefGoogle Scholar
  11. 11.
    C.-L. Lin, C.-F. Lee, W.-Y. Chiu, Preparation and properties of poly(acrylic acid) oligomer stabilized superparamagnetic ferrofluid. Colloids Surf. A 370, 1–5 (2005)Google Scholar
  12. 12.
    D. Ramimoghadam, S. Bagheri, S.B.A. Hamid, In-situ precipitation of ultra-stable nano-magnetite slurry. J. Magn. Magn. Mater. 379, 74–79 (2015)CrossRefGoogle Scholar
  13. 13.
    D. Ramimoghadam, S. Bagheri, A.T. Yousefi, S.B.A. Hamid, Statistical optimization of effective parameters on saturation magnetization of nanomagnetite particles. J. Magn. Magn. Mater. 393, 30–35 (2015)CrossRefGoogle Scholar
  14. 14.
    R.Y. Hong, B. Feng, L.L. Chen, G.H. Liu, H.Z. Li, Y. Zheng, D.G. Wei, Synthesis, characterization and MRI application of dextran-coated Fe3O4 magnetic nanoparticles. Biochem. Eng. J. 42, 290–300 (2008)CrossRefGoogle Scholar
  15. 15.
    D. Ramimoghadam, S. Bagheri, S.B.A. Hamid, Progress in electrochemical synthesis of magnetic iron oxide nanoparticles. J. Magn. Magn. Mater. 368, 207–229 (2014)CrossRefGoogle Scholar
  16. 16.
    H. Wang, S. Liu, X. Yang, R. Yuan, Y. Chai, Mixed-phase iron oxide nanocomposites as anode materials for lithium-ion batteries. J. Power Sources 276, 170–175 (2015)CrossRefGoogle Scholar
  17. 17.
    R. Vijayakumar, Yu. Koltypin, I. Felner, A. Gedanken, Sonochemical synthesis and characterization of pure nanometer-sized Fe3O4 particles. Mater. Sci. Eng., A 286(1), 101–105 (2000)CrossRefGoogle Scholar
  18. 18.
    A. Stepanov, V. Burilov, M. Pinus, A. Mustafina, M. Rümmeli, R. Mendes, R. Amirov, S. Lukashenko, E. Zvereva, S. Katsuba, J. Elistratova, I. Nizameev, M. Kadirov, R. Zairov, Water transverse relaxation rates in aqueous dispersions of superparamagnetic iron oxide nanoclusters with diverse hydrophilic coating. Colloids Surf. A 443, 450–458 (2014)CrossRefGoogle Scholar
  19. 19.
    D. Ramimoghadam, S. Bagheri, S.B.A. Hamid, Stable monodisperse nanomagnetic colloidal suspensions: an overview. Colloids Surf. B 133, 388–411 (2015)CrossRefGoogle Scholar
  20. 20.
    Q. Yu, A. Fu, H. Li, H. Liu, R. Lv, J. Liu, P. Guo, X.S. Zhao, Synthesis and characterization of magnetically separable Ag nanoparticles decorated mesoporous Fe3O4@carbon with antibacterial and catalytic properties. Colloids Surf. A 457, 288–296 (2014)CrossRefGoogle Scholar
  21. 21.
    J. Wang, B. Zhang, L. Wang, M. Wang, F. Gao, One-pot synthesis of water-soluble superparamagnetic iron oxide nanoparticles and their MRI contrast effects in the mouse brains. Mater. Sci. Eng., C 48, 416–423 (2015)CrossRefGoogle Scholar
  22. 22.
    D. Kim, N. Lee, M. Park, B.H. Kim, K. An, T. Hyeon, Synthesis of uniform ferrimagnetic magnetite nanocubes. J. Am. Chem. Soc. 131, 454–455 (2008)CrossRefGoogle Scholar
  23. 23.
    J. Park, K.J. An, Y.S. Hwang, J.-G. Park, H.J. Noh, Y.G. Kim, H.J. Park, N.M. Hwang, T. Hyeon, Ultra large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 3, 891–895 (2004)CrossRefGoogle Scholar
  24. 24.
    Z. Chen, Size and shape controllable synthesis of monodisperse iron oxide nanoparticles by thermal decomposition of iron oleate complex. Synth. React. Inorg. Met.-Org. Chem. 42, 1040–1046 (2012)CrossRefGoogle Scholar
  25. 25.
    J. Huang, L. Wang, X. Zhong, Y. Li, L. Yang, H. Mao, Facile non-hydrothermal synthesis of oligosaccharide coated sub-5 nm magnetic iron oxide nanoparticles with dual MRI contrast enhancement effects. J. Mater. Chem. B. 2, 5344–5351 (2015)CrossRefGoogle Scholar
  26. 26.
    L.M. Bronstein, X. Huang, J. Retrum, A. Schmucker, M. Pink, B.D. Stein, B. Dragnea, Influence of iron oleate complex structure on iron oxide nanoparticle formation. Chem. Mater. 19, 3624–3632 (2007)CrossRefGoogle Scholar
  27. 27.
    W. Xiao, H. Gu, D. Li, D. Chen, X. Deng, Z. Jiao, J. Lin, Microwave-assisted synthesis of magnetite nanoparticles for MR blood pool contrast agents. J. Magn. Magn. Mater. 324, 488–494 (2012)CrossRefGoogle Scholar
  28. 28.
    T. Gonzales-Carreno, M.P. Morales, M. Gracia, C.J. Serna, Preparation of uniform γ-Fe2O3 particles with nanometer size by spray pyrolysis. Materials Lett. 18, 151–155 (1993)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2015

Authors and Affiliations

  • Alexey Stepanov
    • 1
  • Asiya Mustafina
    • 1
  • Rafael G. Mendes
    • 2
  • Mark H. Rümmeli
    • 3
    • 4
  • Thomas Gemming
    • 2
  • Elena Popova
    • 1
  • Irek Nizameev
    • 1
    • 5
  • Marsil Kadirov
    • 1
    • 5
  1. 1.A.E. Arbuzov Institute of Organic and Physical ChemistryKazan’Russia
  2. 2.Leibniz Institute for Solid State and Materials Research DresdenDresdenGermany
  3. 3.IBS Center for Integrated Nanostructure PhysicsInstitute for Basic Science (IBS)DaejeonRepublic of Korea
  4. 4.Department of Energy Science, Department of PhysicsSungkyunkwan UniversitySuwonRepublic of Korea
  5. 5.Kazan National Research Technological UniversityKazanRussia

Personalised recommendations