Journal of the Iranian Chemical Society

, Volume 13, Issue 2, pp 231–241 | Cite as

Doping of copper (I) oxide onto a solid support as a recyclable catalyst for acetylation of amines/alcohols/phenols and synthesis of trisubstituted imidazole

  • Manjulla Gupta
  • Monika GuptaEmail author
Original Paper


A study of copper-mediated C–heteroatom especially C–N and C–O bond formations using simpler methodologies has been carried out. In the present work, acetylation of various substrates such as amines, phenols and alcohols; synthesis of 2,4,5-trisubstituted imidazole is done using simple and easily available starting materials. Copper (I) oxide was synthesized in situ by the reduction of Fehling’s solution with glucose followed by its anchoring onto different supports like silica, HAP, basic alumina and cellulose. Comparison and contrasts between the reactivity of copper (I) oxide supported onto different supports for these reactions are made. The reactivity of copper (I) oxide seems to be largely dependent on the nature of support and the most active catalyst for a particular reaction was further characterized by different spectroscopic techniques such as FTIR, XRD, TGA, XPS, SEM, TEM and AAS. The catalysts were found to be stable, easily recyclable without any significant loss in activity.

Graphical abstract

Applications of solid supported copper (I) oxides (where solid support is silica, HAP, cellulose and basic alumina) are studied for various organic transformations with special emphasis on C–N and C–O bond formation reactions.


Acetylation Amines C–heteroatom Spectroscopic techniques Recyclability 



We are grateful to Director, SAIF, Punjab University, Chandigarh, for TEM and XRD and also to Head, SAIF, IIT Bombay, for recording SEM images. We extend our sincere thanks to UGC, New Delhi, for financial support to purchase FTIR; awarding Major Research Project F 41‐281/2012 (SR), and Prof. R.K. Bamezai, Department of Chemistry, University of Jammu, for recording TGA.

Supplementary material

13738_2015_730_MOESM1_ESM.doc (1.4 mb)
Supplementary material 1 (DOC 1405 kb) Supplementary information 1: Spectral details of all the compounds
13738_2015_730_MOESM2_ESM.doc (3 mb)
Supplementary material 2 (DOC 3046 kb) Supplementary information 1: 1H NMR and 13C NMR of some selected N-acetylated, O-acetylated products and 2,4,5-trisubstituted imidazoles


  1. 1.
    J.F. Hartwig, Nature 455, 314 (2008)CrossRefGoogle Scholar
  2. 2.
    G.A. Artamkina, M.V. Ermolina, I.P. Beletskaya, Mendeleev Commun. 13, 158 (2003)CrossRefGoogle Scholar
  3. 3.
    J.F. Hartwig, Synlett. 1997, 329 (1997)CrossRefGoogle Scholar
  4. 4.
    J.F. Hartwig, Acc. Chem. Res. 31, 852 (1998)CrossRefGoogle Scholar
  5. 5.
    C.G. Frost, P. Mendonca, J. Chem. Soc. Perkin Trans. 1, 2615 (1998)CrossRefGoogle Scholar
  6. 6.
    A.J. Belfield, G.R. Brown, A.J. Foubister, Tetrahedron 55, 11399 (1999)CrossRefGoogle Scholar
  7. 7.
    D. Prim, J.M. Campagne, D. Joseph, B. Andrioletti, Tetrahedron 58, 2041 (2002)CrossRefGoogle Scholar
  8. 8.
    J.P. Wolfe, S. Wagaw, J.-F. Marcoux, S.L. Buchwald, Acc. Chem. Res. 31, 805 (1998)CrossRefGoogle Scholar
  9. 9.
    J.F. Hartwig, Angew. Chem. Int. Ed. Engl. 37, 2046 (1998)CrossRefGoogle Scholar
  10. 10.
    B.H. Yang, S.L. Buchwald, J. Organomet. Chem. 576, 125 (1999)CrossRefGoogle Scholar
  11. 11.
    Y.R. de Miguel, E. Brule, R.G. Margue, J. Chem. Soc. Perkin Trans. 1, 3085 (2001)CrossRefGoogle Scholar
  12. 12.
    B.A. Lorsbach, M.J. Kurth, Chem. Rev. 99, 1549 (1999)CrossRefGoogle Scholar
  13. 13.
    C.A. Parrish, S.L. Buchwald, J. Org. Chem. 66, 3820 (2001)CrossRefGoogle Scholar
  14. 14.
    M. Gupta, S. Paul, R. Gupta, Chin. J. Catal. 35, 444 (2014)CrossRefGoogle Scholar
  15. 15.
    H.M. Wei, H.B. Gong, L. Chen, M. Zi, B.Q. Cao, J. Phys. Chem. C 116, 10510 (2012)CrossRefGoogle Scholar
  16. 16.
    I. Baker, R.S. Gibbs, Ind. Eng. Chem. Anal. Ed. 15, 505 (1943)CrossRefGoogle Scholar
  17. 17.
    W. Sun, W. Sun, Y. Zhao, Y. Chu, J. Solid, State. Chem. 184, 1638 (2011)CrossRefGoogle Scholar
  18. 18.
    C.H. Kuo, M.H. Huang, Nano. Today 5, 106 (2010)CrossRefGoogle Scholar
  19. 19.
    Y.X. Wang, X.F. Tang, Z.G. Yang, Colloids Surf. A Physicochem. Eng. Asp. 388, 38 (2011)CrossRefGoogle Scholar
  20. 20.
    J.H. Lee, S.K. Hong, W.B. Ko, J. Ind. Eng. Chem. 16, 564 (2010)CrossRefGoogle Scholar
  21. 21.
    H.L. Ruiz, J.E.C. de la Pedro, S.R. Lima, I.P. Perez, B.V.R. Sanchez, R. Santillan, O. Cereno, ARKIVOC iii, 139 (2013)Google Scholar
  22. 22.
    V. Beneteau, A. Olmos, T. Boningari, J. Sommer, P. Pale, Tetrahedron Lett. 51, 3673 (2010)CrossRefGoogle Scholar
  23. 23.
    X.Y. Yan, X.L. Tong, Y.F. Zhang, X.D. Han, Y.Y. Wang, G.Q. Jin, Y. Qin, X.Y. Guo, Chem. Commun. 48, 1892 (2012)CrossRefGoogle Scholar
  24. 24.
    K.V.R. Chary, G.V. Sagar, D. Naresh, K.K. Seela, B. Sridhar, J. Phys. Chem. B. 109, 9437 (2005)CrossRefGoogle Scholar
  25. 25.
    A.R. Hajipour, F. Mohammadsaleh, J. Iran. Chem. Soc. (2015). doi: 10.1007/s13738-015-0599-7 Google Scholar
  26. 26.
    S.H. Tohidi, Int. J. Nanosci. Nanotechnol. 7, 7 (2011)Google Scholar
  27. 27.
    Y. Qian, F. Ye, J. Xu, Z.G. Le, Int. J. Electrochem. Sci. 7, 10063 (2012)Google Scholar
  28. 28.
    T.W. Greene, P.G.M. Wuts, Protective Groups in Organic Synthesis, 3rd edn. (Wiley, New York, 1999)CrossRefGoogle Scholar
  29. 29.
    P.J. Kocieński, Protecting Groups (Georg Thieme Verlag, New York, 1994)Google Scholar
  30. 30.
    S. Naik, G. Bhattacharjya, V.R. Kavala, B.K. Patel, ARKIVOC i, 55 (2004)Google Scholar
  31. 31.
    P. Phukan, Tetrahedron Lett. 45, 4785 (2004)CrossRefGoogle Scholar
  32. 32.
    R.H. Baker, F.G. Bordwell, Organic Synthesis Collective, vol. III (Wiley, New York, 1995), p. 141Google Scholar
  33. 33.
    S.V. Pansare, M.G. Malusare, A.N. Rai, Synth. Commun. 30, 2587 (2000)CrossRefGoogle Scholar
  34. 34.
    I.M. Baltork, H. Aliyan, A.R. Khosropour, Tetrahedron 57, 5851 (2001)CrossRefGoogle Scholar
  35. 35.
    S.K. De, Tetrahedron Lett. 45, 2919 (2004)CrossRefGoogle Scholar
  36. 36.
    A.K. Chakraborti, R. Gulhane, Tetrahedron Lett. 44, 6749 (2003)CrossRefGoogle Scholar
  37. 37.
    R. Dalpozzo, A.D. Nino, L. Maiuolo, A. Procopiou, M. Nardi, G. Bartoli, R. Romeo, Tetrahedron Lett. 44, 5621 (2003)CrossRefGoogle Scholar
  38. 38.
    M.L. Kantam, K. Aziz, P.R. Likhar, Catal. Commun. 7, 484 (2006)CrossRefGoogle Scholar
  39. 39.
    R. Ghosh, S. Maiti, A.K. Chakraborty, Tetrahedron Lett. 46, 147 (2005)CrossRefGoogle Scholar
  40. 40.
    A. Kamal, M. Naseer, A. Khan, K.S. Reddy, Y.V.V. Srikanth, T. Krishnaji, Tetrahedron Lett. 48, 3813 (2007)CrossRefGoogle Scholar
  41. 41.
    B. Das, P. Thirupathi, J. Mol. Catal. A: Chem. 269, 12 (2007)CrossRefGoogle Scholar
  42. 42.
    T.S. Reddy, M. Narasimhulu, N. Suryakiran, K.C. Mahesh, K. Ashalatha, Y. Venkateswarlu, Tetrahedron Lett. 47, 6825 (2006)CrossRefGoogle Scholar
  43. 43.
    J.S. Yadav, A.V. Narsaiah, A.K. Basak, P.R. Goud, D. Sreenu, K. Nagaiah, J. Mol. Catal. A: Chem. 255, 78 (2006)CrossRefGoogle Scholar
  44. 44.
    J.K. Joseph, S.L. Jain, B. Sain, J. Mol. Catal. A: Chem. 267, 108 (2007)CrossRefGoogle Scholar
  45. 45.
    K. Shyamprasad, S.Z.M. Shamshuddin, V.T. Vasantha, J. Porous Mater. 21, 1079 (2014)CrossRefGoogle Scholar
  46. 46.
    S. Farhadi, K. Jahanara, A. Sepahdar, J. Iran. Chem. Soc. 11, 1103 (2014)CrossRefGoogle Scholar
  47. 47.
    F. Dehghani, A.R. Sardarian, M.M. Doroodmand, J. Iran. Chem. Soc. 11, 673 (2014)CrossRefGoogle Scholar
  48. 48.
    S. Farhadi, K. Jahanara, Chin. J. Catal. 35, 368 (2014)CrossRefGoogle Scholar
  49. 49.
    T.E. Kristensen, Beilstein J. Org. Chem. 11, 446 (2015)CrossRefGoogle Scholar
  50. 50.
    R.K. Sodhi, V. Kumar, S. Paul, Open Catalysis J. 6, 1 (2013)CrossRefGoogle Scholar
  51. 51.
    A.A. Marzouk, V.M. Abbasov, A.H. Talybov, Chem. J. 2, 179 (2012)Google Scholar
  52. 52.
    S.V. Nalage, M.B. Kalyankar, V.S. Patil, S.V. Bhosale, S.U. Deshmukh, R.P. Pawar, Open Catalysis J. 3, 58 (2010)CrossRefGoogle Scholar
  53. 53.
    M. Gupta, M. Gupta, S. Paul, V.K. Gupta, R. Khajuria, Monatsh. Chem. 146, 143 (2015)CrossRefGoogle Scholar
  54. 54.
    G.J. Poinem, R. Brundavanam, X.T. Le, S. Diordjevic, M. Prokic, D. Fawcett, Int. J. Nanomed. 6, 2083 (2011)Google Scholar
  55. 55.
    A. Chandrasekar, S. Sagadevan, A. Dakshnamoorthy, Int. J. Phys. Sci. 8, 1639 (2013)Google Scholar
  56. 56.
    A. Singh, K.M. Purohit, J. Biotechnol. Biomater. 2, 104 (2011)CrossRefGoogle Scholar
  57. 57.
    S. Paul, P. Nanda, R. Gupta, A. Loupy, Tetrahedron Lett. 43, 4261 (2002)CrossRefGoogle Scholar
  58. 58.
    B.S. Furniss, A.J. Hannaford, P.W.G. Smith, A.R. Tatchell, Vogel’s Textbook of Practical Organic Chemistry, 5th edn. (Longman-ELBS, London, 1991), p. 1370Google Scholar
  59. 59.
    Handbook of Fine Chemicals, Sigma Aldrich (Advancing Science), vol. 2007–2008, p. 629Google Scholar
  60. 60.
    G. Brahmachari, S. Laskar, S. Sarkar, Indian J. Chem. 49B, 1274 (2010)Google Scholar
  61. 61.
    Research Chemicals, Metals and Materials, Alfa aesar (A Johnson Matthey Company), vol. 2011–2013, p. 1124Google Scholar
  62. 62.
    R. Gupta, V. Kumar, M. Gupta, S. Paul, R. Gupta, Indian J. Chem. 47B, 1739 (2008)Google Scholar
  63. 63.
    L.R. Steffel, T.J. Cashman, M.H. Reutershanand, B.R. Linton, J. Am. Chem. Soc. 129, 12956 (2007)CrossRefGoogle Scholar
  64. 64.
    S. Farhadi, S. Panahandehjoo, Eur. J. Chem. 1, 335 (2010)CrossRefGoogle Scholar
  65. 65.
    T.S. Jin, Y.R. Ma, T.S. Li, Z.H. Zhang, G.B. Duan, Indian J. Chem. 38B, 109 (1999)Google Scholar
  66. 66.
    M.M. Mojtahedi, M.S. Abaee, M. Javadpour, Phosphorus Sulfur Silicon Relat. Elem. 185, 2362 (2010)CrossRefGoogle Scholar
  67. 67.
    J. Safari, S.D. Khalili, S.H. Banitaba, J. Chem. Sci. 122, 437 (2010)CrossRefGoogle Scholar
  68. 68.
    M.M. Heravi, M. Zakeri, H. Haghi, Synth. React. Inorg. Metal-Org. Nano-Metal Chem. 41, 1310 (2011)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2015

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of JammuJammuIndia

Personalised recommendations