Journal of the Iranian Chemical Society

, Volume 12, Issue 3, pp 551–559 | Cite as

Sonochemical synthesis and characterization of nanostructured copper(I) supramolecular compound as a precursor for the fabrication of pure-phase copper oxide nanoparticles

  • Maryam Ranjbar
  • Masoomeh Nabitabar
  • Ömer Çelik
  • Mostafa Yousefi
Original Paper


In this investigation, nanoparticles and single crystals of a Cu(I) supramolecular compound, [Cu(dmph)-µ-I]2 (1), [dmph = 2,9-dimethyl-1,10-phenanthroline (neocuproine)], have been synthesized by the reaction of copper(II) acetate, KI and neocuproine as ligand in methanol using sonochemical and heat-gradient methods, respectively. The nanostructure of 1 was characterized by scanning electron microscopy, X-ray powder diffraction, FT-IR spectroscopy and elemental analyses, and the structure of compound 1 was determined by single-crystal X-ray diffraction. The crystal structure of compound 1 has been found to be a binuclear coordination compound. The Cu atoms have slightly distorted tetrahedral geometry with two iodine and two nitrogen coordinated atoms which are trans configuration to each other. Pure phase CuO nanoparticles were simply obtained by calcination of nanosized compound 1 at 700 °C under air atmosphere. This study demonstrates that the supramolecular compounds may be suitable precursors for the simple one-pot preparation of nanoscale metal oxide materials with different and interesting morphologies.


Supramolecular coordination compound Crystal structure Neocuproine Nanostructure Sonochemical method Copper oxide 



Authors are grateful to Iranian National Science Foundation (INSF) and Iranian Research Organization for Science and Technology (IROST), Payam-e Noor University, and Nanotechnology Initiative Council for their unending effort to provide financial support to undertake this work. Also, the authors are indebted to Dicle University Scientific and Technological Applied and Research Center, Diyarbakir, Turkey, for the use of X-ray diffractometer.


  1. 1.
    H.T. Shi, L.M. Qi, J.M. Ma, H.M. Cheng, Polymer-directed synthesis of penniform BaWO4 nanostructures in reverse micelles. J. Am. Chem. Soc. 125, 3450–3451 (2003)CrossRefGoogle Scholar
  2. 2.
    H. Zhang, D.R. Yang, D.S. Li, X.Y. Ma, S.Z. Li, D.L. Que, Controllable growth of ZnO microcrystals by a capping-molecule-assisted hydrothermal process. Cryst. Growth Des. 5, 547–550 (2005)CrossRefGoogle Scholar
  3. 3.
    D.B. Kuang, A.W. Xu, Y.P. Fang, H.Q. Liu, C. Frommen, D. Fenske, Surfactant-assisted growth of novel PbS dendritic nanostructures via facile hydrothermal process. Adv. Mater. 15, 1747–1750 (2003)CrossRefGoogle Scholar
  4. 4.
    F. Kim, S. Connor, H. Song, T. Kuykendall, P.D. Yang, Platonic gold nanocrystals. Angew. Chem. Int. Ed. 43, 3673–3677 (2004)CrossRefGoogle Scholar
  5. 5.
    M.-L. Hu, A. Morsali, L. Aboutorabi, Lead(II) carboxylate supramolecular compounds: coordination modes, structures and nano-structures aspects. Coord. Chem. Rev. 255, 2821–2859 (2011)CrossRefGoogle Scholar
  6. 6.
    R. Chakrabarty, P.S. Mukherjee, P.J. Stang, Supramolecular coordination: self-assembly of finite two- and three-dimensional ensembles. Chem. Rev. 111, 6810–6918 (2011)CrossRefGoogle Scholar
  7. 7.
    V. Safarifard, A. Morsali, Mechanochemical solid-state transformations from a 3D lead(II) chloride triazole carboxylate coordination polymer to its bromide/thiocyanate analogs via anion-replacements: precursors for the preparation of lead(II) chloride/bromide/sulfide nanoparticles. Cryst. Eng. Comm. 14, 5130–5132 (2012)CrossRefGoogle Scholar
  8. 8.
    K. Akhbari, A. Morsali, Thallium(I) supramolecular compounds: structural and properties consideration. Coord. Chem. Rev. 254, 1977–2006 (2010)CrossRefGoogle Scholar
  9. 9.
    A.Y. Robin, K.M. Fromm, Coordination polymer networks with O- and N-donors: what they are, why and how they are made. Coord. Chem. Rev. 250, 2127–2157 (2006)CrossRefGoogle Scholar
  10. 10.
    T. Uemura, S. Kitagawa, Nanocrystals of coordination polymers. Chem. Lett. 34, 132–137 (2005)CrossRefGoogle Scholar
  11. 11.
    A. Gedanken, Using sonochemistry for the fabrication of nanomaterials. Ultrason. Sonochem. 11, 47–55 (2004)CrossRefGoogle Scholar
  12. 12.
    B.S. Wang, H. Zhong, Dichlorido (2,9-dimethyl-1,10-phenanthroline-κ2 N, N′) copper(II). Acta Cryst. E65, m1156 (2009)Google Scholar
  13. 13.
    N. Akbarzadeh Torbati, A.R. Rezvani, N. Safari, V. Amani, H.R. Khavasi, Dichlorido (2,9-dimethyl-1,10-phenanthroline-κ2 N,N′) cobalt(II). Acta Cryst. E66, m1236 (2010)Google Scholar
  14. 14.
    A. Dehghani, M.M. Amini, E. Najafi, A. Tadjarodi, B. Notash, Dibromido (2,9-dimethyl-1,10-phenanthroline-κ2 N, N′) zinc. Acta Cryst. E68, m811 (2012)Google Scholar
  15. 15.
    R. Alizadeh, A. Heidari, R. Ahmadi, V. Amani, Dibromido (2,9-dimethyl-1,10-phenanthroline-κ2 N, N′) mercury(II). Acta Cryst. E65, m483–m484 (2009)Google Scholar
  16. 16.
    S.A. Shirvan, M. Aghajeri, S. Haydari Dezfuli, F. Khazali, A. Borsalani, Dibromido (2,9-dimethyl-1,10-phenanthroline-κ2 N, N′) cobalt(II) acetonitrile monosolvate. Acta Cryst. E68, m1407 (2012)Google Scholar
  17. 17.
    J.H. Bang, K.S. Suslick, Applications of ultrasound to the synthesis of nanostructured materials. Adv. Mater. 22, 1039–1059 (2010)CrossRefGoogle Scholar
  18. 18.
    W.-J. Son, J. Kim, J. Kim, W.-S. Ahn, Sonochemical synthesis of MOF-5. Chem. Commun. 6336–6338 (2008)Google Scholar
  19. 19.
    L.-G. Qiu, Z.-Q. Li, Y. Wu, W. Wang, T. Xu, X. Jiang, Facile synthesis of nanocrystals of a microporous metal-organic framework by an ultrasonic method and selective sensing of organoamines. Chem. Commun. 3642–3644 (2008)Google Scholar
  20. 20.
    V. Safarifard, A. Morsali, Sonochemical syntheses of a nanoparticles cadmium(II) supramolecule as a precursor for the synthesis of cadmium(II) oxide nanoparticles. Ultrason. Sonochem. 19, 1227–1233 (2012)CrossRefGoogle Scholar
  21. 21.
    M. Ranjbar, Ö. Çelik, S.H. Mahmoudi Najafi, S. Sheshmani, N. Akbari Mobarakeh, Synthesis of lead(II) minoxidil coordination polymer: a new precursor for lead(II) oxide and lead(II) hydroxyl bromide. J. Inorg. Organomet. Polym. 22, 837–844 (2012)CrossRefGoogle Scholar
  22. 22.
    V. Safarifard, A. Morsali, Sonochemical syntheses of a nano-sized copper(II) supramolecule as a precursor for the synthesis of copper(II) oxide nanoparticles. Ultrason. Sonochem. 19, 823–829 (2012)CrossRefGoogle Scholar
  23. 23.
    D.G. Shchukin, H. Mohwald, Sonochemical nanosynthesis at the engineered interface of a cavitation microbubble. Phys. Chem. Chem. Phys. 8, 3496–3506 (2006)CrossRefGoogle Scholar
  24. 24.
    L. Aboutorabi, A. Morsali, Sonochemical syntheses and characterization of nano-structured three-dimensional lead(II) coordination polymer constructed of fumaric acid. Ultrason. Sonochem. 18, 407–411 (2011)CrossRefGoogle Scholar
  25. 25.
    X.G. Zheng, C.N. Xu, Y. Tomokiyo, E. Tanaka, H. Yamada, Y. Soejima, Observation of charge stripes in cupric oxide. Phys. Rev. Lett. 85, 5170–5173 (2000)CrossRefGoogle Scholar
  26. 26.
    A.B. Kuz’menko, D. van der Marel, P.J.M. van Bentum, C. Presura, A.A. Bush, Infrared spectroscopic study of CuO: signatures of strong spin–phonon interaction and structural distortion. Phys. Rev. B 63, 094303 (2001)CrossRefGoogle Scholar
  27. 27.
    J. Tamaki, K. Shimanoc, Y. Yamada, Y. Yamamoto, N. Miura, N. Yamazoe, Dilute hydrogen sulfide sensing properties of CuO–SnO2 thin film prepared by low-pressure evaporation method. Sens. Actuat. B 49, 121–125 (1998)CrossRefGoogle Scholar
  28. 28.
    J. Chen, S.Z. Deng, N.S. Xu, W.X. Zhang, X.G. Wen, S.H. Yang, Temperature dependence of field emission from cupric oxide nanobelt films. Appl. Phys. Lett. 83, 746–748 (2003)CrossRefGoogle Scholar
  29. 29.
    J.T. Chen, F. Zhang, J. Wang, G.A. Zhang, B.B. Miao, X.Y. Fan, D. Yan, P.X. Yan, CuO nanowires synthesized by thermal oxidation route. J. Alloys Compd. 454, 268–273 (2008)CrossRefGoogle Scholar
  30. 30.
    L. Yu, G. Zang, Y. Wu, X. Bai, D. Guo, Cupric oxide nanoflowers synthesized with a simple solution route and their field emission. J. Cryst. Growth 310, 3125–3130 (2008)CrossRefGoogle Scholar
  31. 31.
    J. Zhu, H. Bi, Y. Wang, X. Wang, X. Yang, L. Lu, Synthesis of flower-like CuO nanostructures via a simple hydrolysis route. Mater. Lett. 61, 5236–5238 (2007)CrossRefGoogle Scholar
  32. 32.
    Y.-K. Su, C.-M. Shen, H.-T. Yang, H.-L. Li, H.-J. Gao, Controlled synthesis of highly ordered CuO nanowire arrays by template-based sol–gel route. Trans. Nonferr. Met. Soc. China 17, 783–786 (2007)CrossRefGoogle Scholar
  33. 33.
    G.-Q. Yuan, H.-F. Jiang, C. Lin, S.-J. Liao, Shape- and size-controlled electrochemical synthesis of cupric oxide nanocrystals. J. Cryst. Growth 303, 400–406 (2007)CrossRefGoogle Scholar
  34. 34.
    H. Zhang, S. Li, X. Ma, D. Yang, Controllable growth of dendrite-like CuO nanostructures by ethylene glycol assisted hydrothermal process. Mater. Res. Bull. 43, 1291–1296 (2008)CrossRefGoogle Scholar
  35. 35.
    F. Teng, W. Yao, Y. Zheng, Y. Ma, Y. Teng, T. Xu, S. Liang, Y. Zhu, Synthesis of flower-like CuO nanostructures as a sensitive sensor for catalysis. Sens. Actuat. B 134, 761–768 (2008)CrossRefGoogle Scholar
  36. 36.
    X. Song, H. Yu, S. Sun, Single-crystalline CuO nanobelts fabricated by a convenient route. J. Colloid Interf. Sci. 289, 588–591 (2005)CrossRefGoogle Scholar
  37. 37.
    D. Keyson, D.P. Volanti, L.S. Cavalcante, A.Z. Simes, J.A. Varela, E. Longo, CuO urchin-nanostructures synthesized from a domestic hydrothermal microwave method. Mater. Res. Bull. 43, 771–775 (2008)CrossRefGoogle Scholar
  38. 38.
    X. Xu, M. Zhang, J. Feng, M. Zhang, Shape-controlled synthesis of single-crystalline cupric oxide by microwave heating using an ionic liquid. Mater. Lett. 62, 2787–2790 (2008)CrossRefGoogle Scholar
  39. 39.
    A. Askarinezhad, A. Morsali, Syntheses and characterization of CdCO3 and CdO nanoparticles by using a sonochemical method. Mater. Lett. 62, 478–482 (2008)CrossRefGoogle Scholar
  40. 40.
    Y. Mu, J. Yang, S. Han, H. Hou, Y. Fan, Syntheses and gas-sensing properties of CuO nanostructures by using [Cu(pbbt)Cl2]2·CH3OH as a precursor. Mater. Lett. 64, 1287–1290 (2010)CrossRefGoogle Scholar
  41. 41.
    Mercury 1.4.1, Copyright Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, CB2 1EZ, UK, 2001–2005Google Scholar
  42. 42.
    Bruker, SADABS (Bruker AXS Inc, USA, 2007)Google Scholar
  43. 43.
    G.M. Sheldrick, A short history of SHELX. Acta Cryst. A64, 112–122 (2008)CrossRefGoogle Scholar
  44. 44.
    A.L. Spek, PLATON, an integrated tool for the analysis of the results of a single crystal structure determination. Acta Cryst. A46, C34 (1990)Google Scholar
  45. 45.
    L.J. Farrugia, ORTEP-3 for Windows—a version of ORTEP-III with a graphical user interface (GUI). J. Appl. Cryst. 30, 565 (1997)CrossRefGoogle Scholar
  46. 46.
    A. Morsali, M.Y. Masoomi, Structures and properties of mercury(II) coordination polymers. Coord. Chem. Rev. 253, 1882–1905 (2009)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2014

Authors and Affiliations

  • Maryam Ranjbar
    • 1
  • Masoomeh Nabitabar
    • 2
  • Ömer Çelik
    • 3
  • Mostafa Yousefi
    • 1
  1. 1.Department of Chemical TechnologiesIranian Research Organization for Science and Technology (IROST)TehranIran
  2. 2.Department of ChemistryPayam e Noor UniversityTehranIran
  3. 3.Department of Physics, Faculty of EducationDicle UniversitySur, DiyarbakirTurkey

Personalised recommendations