Journal of the Iranian Chemical Society

, Volume 11, Issue 5, pp 1257–1264 | Cite as

Sonochemical synthesis and characterization of nano-sized zirconium(IV) complex: new precursor for the preparation of pure monoclinic and tetragonal zirconia nanoparticles

  • Maryam Ranjbar
  • Mahboobe Lahooti
  • Mostafa Yousefi
  • Azim Malekzadeh
Original Paper

Abstract

In this study, synthesis and characterization of two polymorphs of a new nano-sized zirconium(IV) complex, [ZrO(dmph)I2] (1), {dmph = 2,9-dimethyl-1,10-phenanthroline (neocuproine)}, have been investigated in two different solvents. The reaction between zirconyl nitrate pentahydrate and potassium iodide with dmph as a ligand under ultrasonic irradiation in methanol and mono-ethylene glycol (MEG) leads to the formation of the nano-sized Zr(IV) complex. Characterization of the Zr(IV) complex has been performed using scanning electron microscopy (SEM), X-ray powder diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and elemental analysis. The thermal stability of the compound 1 has been studied by thermal gravimetric and differential thermal analyses. Particle sizes of the compound 1 have been decreased after thermal treatments in an autoclave. Pure monoclinic (m) and tetragonal (t) zirconia (ZrO2) nanoparticles were readily synthesized from thermal decomposition of the Zr(IV) complex as a new precursor in presence of methanol and MEG as solvents, respectively. Zirconium oxide was characterized by FT-IR, XRD, and SEM to depict the phase and morphology. The results showed that, pure zirconia was produced with particle size about 59 nm and crystal system was monoclinic when methanol was used as a solvent during complexation process. On the other hand, particle sizes of zirconia with tetragonal structure were significantly reduced to about 39 nm, when MEG was used as solvent.

Keywords

Nano-sized zirconium(IV) complex Sonochemical method Tetragonal ZrO2 Monoclinic ZrO2 Thermal decomposition 

Notes

Acknowledgments

The authors would like to express gratitude for support by Iranian Research Organization for Science and Technology (IROST), University of Damghan, and Nanotechnology Initiative Council.

References

  1. 1.
    A. Aslani, A. Morsali, V.T. Yilmaz, C. Kazak, J. Mol. Struc. 929, 187 (2009)CrossRefGoogle Scholar
  2. 2.
    M. Tahmasebpour, A.A. Babaluo, M.K. Razavi Aghjeh, J. Eur. Ceram. Soc. 28, 773 (2008)CrossRefGoogle Scholar
  3. 3.
    S. Park, J.M. Vohs, R.J. Gorte, Nature 404, 265 (2000)CrossRefGoogle Scholar
  4. 4.
    Y.W. Li, D.H. He, Z.X. Cheng, C.L. Su, J.R. Li, M.J. Zhu, Mol. Catal. A. 175, 267 (2001)CrossRefGoogle Scholar
  5. 5.
    E.C. Subbarao, H.S. Maiti, Adv. Ceram. 24, 731 (1988)Google Scholar
  6. 6.
    Q. Zhang, J. Shen, J. Wang, G. Wu, L. Chen, Int. J. Inorg. Mater. 2, 319 (2000)CrossRefGoogle Scholar
  7. 7.
    P.K. Wright, A.G. Evans, Curr. Opin. Solid State Mater. Sci. 4, 25 (1999)Google Scholar
  8. 8.
    C. Piconi, G. Maccauro, Biomaterials 20, 1 (1999)CrossRefGoogle Scholar
  9. 9.
    P. Salas, E.D. Rosa-Cruz, L.A. Diaz-Torres, V.M. Castano, R. Melendrez, M. Barboza-Flores, Radiat. Meas. 37, 187 (2003)CrossRefGoogle Scholar
  10. 10.
    P. Gao, L.J. Meng, M.P. dos Santos, V. Teixeira, M. Andritschky, Thin Solid Films 377, 32 (2000)CrossRefGoogle Scholar
  11. 11.
    P.G. Sammes, G. Yahioglu, Chem. Soc. Rev. 23, 327 (1994)CrossRefGoogle Scholar
  12. 12.
    H. Keypour, A.A. Dehghani-Firouzabadi, H.R. Khavasi, Polyhedron 28, 1546 (2009)CrossRefGoogle Scholar
  13. 13.
    V. Amani, N. Safari, H.R. Khavasi, P. Mirzaei, Polyhedron 26, 4908 (2007)CrossRefGoogle Scholar
  14. 14.
    C. Stocker, A. Baiker, J. Non-Cryst, Solid 223, 165 (1998)Google Scholar
  15. 15.
    I.I. Stefanc, S. Music, G. Stefanic, A. Gajovic, J. Mol. Struct. 480, 621 (1999)CrossRefGoogle Scholar
  16. 16.
    J.A. Wang, M.A. Valenzuela, J. Salmones, A. Vazquez, A. Garcia-Ruiz, X. Bokhimi, Catal. Today 68, 21 (2001)CrossRefGoogle Scholar
  17. 17.
    V.V. Srdic, M. Winterer, J. Eur. Ceram. Soc. 26, 3145 (2006)CrossRefGoogle Scholar
  18. 18.
    N.L. Wu, T.F. Wu, J. Am. Ceram. Soc. 83, 3225 (2000)CrossRefGoogle Scholar
  19. 19.
    D. Vollath, K.E. Sickafus, Nanostruct. Mater. 1, 427 (1992)CrossRefGoogle Scholar
  20. 20.
    R. Nitsche, M. Rodewald, G. Skandan, H. Fuess, H. Hahn, Nanostruct. Mater. B. 7(5), 535 (1996)CrossRefGoogle Scholar
  21. 21.
    R.D. Purohit, S. Saha, A.K. Tyagi, Mater. Sci. Eng. B. 130, 57 (2006)CrossRefGoogle Scholar
  22. 22.
    P.E. Meskin, V.K. Ivanov, A.E. Barantchikov, B.R. Churagulov, Y.D. Tretyakov, Ultrason. Sonochem. 13, 47 (2006)CrossRefGoogle Scholar
  23. 23.
    H.Y. Lee, W. Iehemann, B.L. Mordike, J. Eur. Ceram. Soc. 10, 245 (1992)CrossRefGoogle Scholar
  24. 24.
    Q. Han, F. Qiang, M. Wang, J. Zhu, L. Lu, X. Wang, Mater. Res. Bull. 45, 813 (2010)CrossRefGoogle Scholar
  25. 25.
    G.I. Spijksma, H.J.M. Bouwmeester, D.H.A. Blank, A. Fischer, M. Henry, V.G. Kessler, Inorg. Chem. 45, 4938 (2006)CrossRefGoogle Scholar
  26. 26.
    M. Putkonen, L. Niinistö, J. Mater. Chem. 11, 3141 (2001)CrossRefGoogle Scholar
  27. 27.
    K.S. Suslick, S.B. Choe, A.A. Cichowlas, M.W. Grinstaff, Nature 353, 414 (1991)CrossRefGoogle Scholar
  28. 28.
    B.J.H. Bang, K.S. Suslick, Adv. Mater. 22, 1039 (2010)CrossRefGoogle Scholar
  29. 29.
    M. Martos, J. Morales, L. Sanchez, R. Ayouchi, D. Leinen, F. Martin, J.R. Ramos Barrado, Electrochim. Acta 46, 2939 (2001)CrossRefGoogle Scholar
  30. 30.
    M.V. Landau, L. Vradman, M. Herskowitz, Y. Koltypin, J. Catal. 201, 22 (2001)CrossRefGoogle Scholar
  31. 31.
    H. Wang, Y.N. Lu, J.J. Zhu, H.Y. Chen, Inorg. Chem. 42, 6404 (2003)CrossRefGoogle Scholar
  32. 32.
    V. Safarifard, A. Morsali, Ultrason. Sonochem. 19, 1227 (2012)CrossRefGoogle Scholar
  33. 33.
    M.Y. Masoomi, A. Morsali, RSC Adv. 3, 19191 (2013)CrossRefGoogle Scholar
  34. 34.
    A. Morsali, M.Y. Masoomi, Coord. Chem. Rev. 253, 1882 (2009)CrossRefGoogle Scholar
  35. 35.
    M.Y. Masoomi, A. Morsali, Coord. Chem. Rev. 256, 2921 (2012)CrossRefGoogle Scholar
  36. 36.
    M.Y. Masoomi, G. Mahmoudi, A. Morsali, J. Coord. Chem. 63, 1186 (2010)CrossRefGoogle Scholar
  37. 37.
    M. Ranjbar, Ö. Çelik, S.H. Mahmoudi Najafi, S. Sheshmani, N. Akbari Mobarakeh, J. Inorg. Organomet. Polym. 22, 837 (2012)CrossRefGoogle Scholar
  38. 38.
    M. Ranjbar, E. Malakooti, S. Sheshmani, J. Chem. (2013). doi: 10.1155/2013/560983 Google Scholar
  39. 39.
    L. Aboutorabi, A. Morsali, Ultrason. Sonochem. 18, 407 (2011)CrossRefGoogle Scholar
  40. 40.
    M. Khorasani-Motlagh, M. Noroozifar, A. Ahanin-Jan, J. Iran. Chem. Soc. 9, 833 (2012)CrossRefGoogle Scholar
  41. 41.
    V. Viossat, P. Lemoine, E. Dayan, N.-H. Dung, B. Viossat, J. Mol. Struc. 741, 45 (2005)CrossRefGoogle Scholar
  42. 42.
    S.F. Wang, F. Gu, M.K. Lü, Zs Yang, G.J. Zhou, H.P. Zhang, Y.Y. Zhou, S.M. Wang, Opt. Mater. 28, 1222 (2006)CrossRefGoogle Scholar
  43. 43.
    H. Klug, L. Alexander (eds.), X-ray diffraction procedures (Wiley, New York, 1962), p. 125Google Scholar

Copyright information

© Iranian Chemical Society 2013

Authors and Affiliations

  • Maryam Ranjbar
    • 1
  • Mahboobe Lahooti
    • 2
  • Mostafa Yousefi
    • 1
  • Azim Malekzadeh
    • 2
  1. 1.Department of Chemical TechnologiesIranian Research Organization for Science and Technology (IROST)TehranIran
  2. 2.Department of Chemistry, Faculty of SciencesDamghan UniversityDamghanIran

Personalised recommendations