Advertisement

Journal of the Iranian Chemical Society

, Volume 11, Issue 2, pp 369–378 | Cite as

Synthesis, in vitro lipoxygenase inhibition, docking study and thermal stability analyses of novel indole derivatives

Non-isothermal kinetic study of potent LOX inhibitor N’-(diphenylmethylene)-2-(1H-indole-3-yl) acetohydrazide
  • Muhammad YarEmail author
  • Lala Rukh Sidra
  • Eleni Pontiki
  • Nafeesa Mushtaq
  • Muhammad Ashraf
  • Rumana Nasar
  • Islam Ullah Khan
  • Nasir Mahmood
  • Syed Ali Raza Naqvi
  • Zulfiqar Ali Khan
  • Sohail Anjum Shahzad
Original Paper

Abstract

A series of indole derivatives has been synthesized and biologically evaluated to identify potent new lipoxygenase (LOX) inhibitors. All selected indole derivatives were screened for their LOX inhibition studies. Most of compounds showed good in vitro LOX inhibition properties exhibiting IC50 values in the range of 53.61 ± 0.14 to 198.61 ± 0.11 μM (mean ± SEM), as compared to the standard inhibitor baicalein with IC50 value 22.4 ± 1.3 μM. Structure activity relationship has been discussed and docking stimulation of most active compound 4f has also performed. Thermal stability and melting point of indole derivatives have been performed by thermal gravimetric analysis and differential scanning calorimetry analysis under nitrogen atmosphere at heating rate of 20 °C min−1. Compound 4f bearing bis-phenyl moiety has been found to be the most potent (IC50 53.61 ± 0.14 μM) and thermally most stable among the tested compounds. Imine (C=N) was found to be the key moiety for increasing the thermal stabilities of indole derivatives. FT-IR, NMR and elemental analysis techniques were performed for structural characterization.

Keywords

Differential scanning calorimetry Thermal gravimetric analysis Lipoxygenase inhibitor Imine Indole-3-acetic acid 

Notes

Acknowledgments

We acknowledge Aamir Saghir for his guidance and Higher Education Commission and Ministry of Science and Technology Pakistan for financial support.

Supplementary material

13738_2013_308_MOESM1_ESM.docx (23 kb)
Supplementary material 1 (DOCX 23 kb)

References

  1. 1.
    S. Bhattacharjee, Curr. Sci. 89, 1113 (2005)Google Scholar
  2. 2.
    J. Jampilek, M. Dolezal, V. Opletalova, J. Hartl, Curr. Med. Chem. 13, 117 (2006)CrossRefGoogle Scholar
  3. 3.
    N. Pommery, T. Taverne, A. Telliez, L. Goossens, C. Charlier, J. Pommery, J.F. Goossens, R. Houssin, F. Durant, J.P. Hénichart, J. Med. Chem. 47, 6195 (2004)CrossRefGoogle Scholar
  4. 4.
    T.P.O. Connor, N.M.O. Brien, Fox P. F. (ed). Significance of lipoxygenase in fruits and vegetables. In Food Enzymology. (Elsevier Science Publishing Co., Inc. New York. 1991)Google Scholar
  5. 5.
    D. Steinhilber, Curr. Med. Chem. 6, 71 (1999)Google Scholar
  6. 6.
    M. Yar, M. Arshad, M.N. Akhtar, S.A. Shahzad, I.U. Khan, Z.A. Khan, N. Ullah, I. Ninomiya, Eur. J. Chem. 3, 26 (2012)CrossRefGoogle Scholar
  7. 7.
    M.A.A. Radwan, E.A. Ragab, N.M. Sabry, S.M.E. Shenawy, Bioorg. Med. Chem. 15, 3832 (2007)CrossRefGoogle Scholar
  8. 8.
    T.P. Pathak, K.M. Gligorich, B.E. Welm, M.S. Sigman, J. Am. Chem. Soc. 132, 7870 (2010)CrossRefGoogle Scholar
  9. 9.
    O. Talaz, I. Gulcin, S. Goksu, N. Saracoglu, Bioorg. Med. Chem. 17, 6583 (2009)CrossRefGoogle Scholar
  10. 10.
    B.B. Mishra, R.K. Singh, A. Srivastava, V.J. Tripathi, V.K. Tiwari, Mini-Rev. Med. Chem. 9, 107 (2009)CrossRefGoogle Scholar
  11. 11.
    D. Lednicer, The Organic Chemistry of Drug Synthesis (A John Wiley & Sons, Inc. New Jersey. 2007)Google Scholar
  12. 12.
    J.H. Hutchinson, S. Charleson, J.F. Evans, J.P. Falgueyret, K. Hoogsteen, T.R. Jones, S. Kargman, D. Macdonald, C.S. McFarlane, D.W. Nicholson, J. Med. Chem. 38, 4538 (1995)CrossRefGoogle Scholar
  13. 13.
    E. Krzyzak, B. Szczesniak-Siega, D. Szkatula, W. Malinka, J. Therm. Anal. Calorim. 108, 1303 (2012)CrossRefGoogle Scholar
  14. 14.
    S. Arora, D.K. Aneja, M. Kumar, O. Prakash, Der. Pharm. Lett. 3, 272 (2011)Google Scholar
  15. 15.
    S. Arora, D.K. Aneja, C. Sharma, O. Prakash, M. Kumar, J. Therm. Anal. Calorim. 111, 17 (2013)CrossRefGoogle Scholar
  16. 16.
    M.S. Fish, N.M. Johnson, E.C. Horning, J. Am. Chem. Soc. 78, 3668 (1956)CrossRefGoogle Scholar
  17. 17.
    N. Siddiqui, M.S. Aalam, W. Ahsan, Acta Pharma. 58, 445 (2008)CrossRefGoogle Scholar
  18. 18.
    J.H. Flynn, L.A. Wall, J. Res. Natl. Bur. Stand. Sect. A-Phys. Chem. A70, 487 (1966)CrossRefGoogle Scholar
  19. 19.
    K. Cai, Y. Fang, Y. Xia, Y. Su, J. Mol. Catal. B Enzym. 32, 21 (2004)CrossRefGoogle Scholar
  20. 20.
    W. Minor, J. Steczko, B. Stec, Z. Otwinowski, J.T. Bolin, R. Walter, B. Axelrod, Biochem. 35, 10687 (1996)CrossRefGoogle Scholar
  21. 21.
    E.S. Jankun, J.C. Wynimko, S.H. Selman, J. Jankun, Curr. Enzym. Inhibit. 3, 119 (2007)CrossRefGoogle Scholar
  22. 22.
    E. Skrzypczak-Jankun, K. Zhou, J. Jankun, Int. J. Mol. Med. 12, 415 (2003)Google Scholar
  23. 23.
    H.M. Berman, K. Henrick, H. Nakamura, Nature Struct. Biol. 10, 980 (2003)CrossRefGoogle Scholar
  24. 24.
    S. Pallakyan, PyRx-Python Prescription, v.0.5. The Scripps Research Institute, 2008–2010. http://pyrx.scripps.edu/
  25. 25.
    T. Ozawa, Bull. Chem. Soc. Jpn. 38, 1881 (1965)CrossRefGoogle Scholar
  26. 26.
    M.E. Brown, M. Maciejewski, S. Vyazovkin, R. Nomen, J. Sempere, A. Burnham, J. Opfermann, R. Strey, H.L. Anderson, A. Kemmler, R. Keuleers, J. Janssens, H.O. Desseyn, C.R. Li, T.B. Tang, B. Roduit, J. Malek, T. Mitsuhashi, Thermochim. Acta 355, 125 (2000)CrossRefGoogle Scholar
  27. 27.
    H.E. Kissinger, J. Res. Natl. Bur. Stand. 57, 217 (1956)CrossRefGoogle Scholar
  28. 28.
    S. Baylac, P. Racine, Inter. J. Aromatherapy. 13, 138 (2003)CrossRefGoogle Scholar
  29. 29.
    CambridgeSoft, USA, ChemDraw Ultra_v.12 (1986–2009).http://www.cambridgesoft.com/software/chemDraw/
  30. 30.
    OpenBabel_ v.2.2.3 (2006). http://sourceforge.net/projects/openbabel/
  31. 31.
  32. 32.
    E.F. Pettersen, T.D. Goddard, C.C. Huang, G.S. Couch, D.M. Greenblatt, E.C. Meng, T.E. Ferrin, J. Comput. Chem. 25, 1605 (2004)CrossRefGoogle Scholar
  33. 33.
    J. Wang, R.M. Wolf, J.W. Caldwell, P.A. Kollman, D.A. Case, J. Comput. Chem. 25, 1157 (2004)CrossRefGoogle Scholar
  34. 34.
    J. Wang, W. Wang, P.A. Kollman, D.A. Case, J. Mol. Graph. Model. 25, 247 (2006)CrossRefGoogle Scholar
  35. 35.
    B. Hess, C. Kutzner, D.V.D. Spoel, E. Lindahl, J. Chem. Theory Comput. 4, 435 (2008)CrossRefGoogle Scholar
  36. 36.
    K.L. Larsen, S. Piana, K. Palmo, P. Maragakis, J.L. Klepeis, R.O. Dror, D.E. Shaw, Proteins. 78, 1950 (2010)Google Scholar
  37. 37.
    O. Trott, A.J. Olson, J. Comput. Chem. 31, 455 (2010)Google Scholar
  38. 38.
    Autodock Vina v. 1.1.1. Copyright_1989–2010, The Scripps Research InstituteGoogle Scholar

Copyright information

© Iranian Chemical Society 2013

Authors and Affiliations

  • Muhammad Yar
    • 1
    Email author
  • Lala Rukh Sidra
    • 1
  • Eleni Pontiki
    • 2
  • Nafeesa Mushtaq
    • 1
  • Muhammad Ashraf
    • 3
  • Rumana Nasar
    • 3
  • Islam Ullah Khan
    • 4
  • Nasir Mahmood
    • 5
  • Syed Ali Raza Naqvi
    • 6
  • Zulfiqar Ali Khan
    • 6
  • Sohail Anjum Shahzad
    • 7
  1. 1.Interdisciplinary Research Center in Biomedical MaterialsCOMSATS Institute of Information TechnologyLahorePakistan
  2. 2.Department of Pharmaceutical Chemistry, School of PharmacyAristotle University of ThessalonikiThessalonikiGreece
  3. 3.Department of Biochemistry and BiotechnologyThe Islamia University of BahawalpurBahawalpurPakistan
  4. 4.Department of ChemistryGovernment College UniversityLahorePakistan
  5. 5.Department of Allied Sciences and Chemical PathologyUniversity of Health SciencesLahorePakistan
  6. 6.Department of ChemistryGovernment College UniversityFaisalabadPakistan
  7. 7.Department of ChemistryCOMSATS Institute of Information TechnologyAbbottabadPakistan

Personalised recommendations