3D local circular difference patterns for biomedical image retrieval

  • Nilima MohiteEmail author
  • Laxman Waghmare
  • Anil Gonde
  • Santoshkumar Vipparthi
Regular Paper


In this paper, three-dimensional local circular difference patterns (3D LCDP) and three-dimensional local circular difference wavelet patterns (3D LCDWP) are proposed for retrieval of biomedical images. The standard patterns are used to correlate gray value of center pixel with neighboring pixels. In the proposed approach, 3D volume is generated for calculating local circular difference patterns with the help of three planes obtained from original image. In case of color image, RGB channels are used as three planes and Gaussian filter banks of different resolution for gray level image. From this 3D volume, LCDP values are obtained by calculating relationship between center pixel and neighboring pixels in five different directions. Finally, feature vector is generated using histogram. The performance is evaluated using different medical databases: (i) open access series of imaging studies MRI database, (ii) International early lung cancer action program and vision and image analysis research groups CT scans, (iii) MESSIDOR-Retinal image database. The results are compared with existing biomedical image retrieval techniques by considering average retrieval precision and average retrieval rate as evaluation parameters.


3D LCDP 3D LCDWP Gaussian filter bank Image retrieval Local mesh patterns 



  1. 1.
    Liu Y, Zhang D, Lu G, Ma W (2007) A survey of content-based image retrieval with high-level semantics. Pattern Recognit 40:262–282CrossRefzbMATHGoogle Scholar
  2. 2.
    Muller H, Michoux N, Bandon D, Geissbuhler A (2004) A review of content-based image retrieval systems in medical applications clinical benefits and future directions. Int J Med Inform 73(1):123CrossRefGoogle Scholar
  3. 3.
    Das P, Neelima A (2017) An overview of approaches for content-based medical image retrieval. Int J Multimed Inf Retr 6:271–280CrossRefGoogle Scholar
  4. 4.
    Akgul C, Rubin D, Napel S, Beaulieu C, Greenspan H, Acar B (2011) Content based image retrieval in radiology: current status and future directions. Digit Imaging 24(2):208–222CrossRefGoogle Scholar
  5. 5.
    Li J, Allinson N (2008) A comprehensive review of current local features for computer vision. Neurocomputing 71:1771–1787CrossRefGoogle Scholar
  6. 6.
    Do M, Vetterli M (2002) Wavelet-based texture retrieval using generalized Gaussian density and Kullback–Leibler distance. IEEE Trans Image Process 11(2):146–158MathSciNetCrossRefGoogle Scholar
  7. 7.
    Manjunath B, Ma W (1996) Texture features for browsing and retrieval of image data. IEEE Trans Pattern Anal Mach Intell 18(8):837–842CrossRefGoogle Scholar
  8. 8.
    Porter R, Canagarajah N (1997) Robust rotation invariant texture classification: wavelet, Gabor filter and GMRF based schemes. IEEE Proc Vision Image Signal Process 144(3):180–188CrossRefGoogle Scholar
  9. 9.
    Kokare M, Biswas P, Chatterji B (2007) Texture image retrieval using rotated wavelet filters. Pattern Recognit Lett 28:1240–1249CrossRefGoogle Scholar
  10. 10.
    Kokare M, Biswas P, Chatterji B (2005) Texture image retrieval using new rotated complex wavelet filters. IEEE Trans Syst Man Cybern B Cybern 35(6):1168–1178CrossRefGoogle Scholar
  11. 11.
    Kokare M, Biswas P, Chatterji B (2006) Rotation invariant texture image retrieval using rotated complex wavelet filters. IEEE Trans Syst Man Cybern B Cybern 36(6):1273–1282CrossRefGoogle Scholar
  12. 12.
    Baby C, Chandy D (2013) Content based retinal image retrieval using dual tree complex wavelet transform. International conference on signal processing, image processing and pattern recognition, pp 195–199Google Scholar
  13. 13.
    Shinde AA, Rahulkar AD, Patil CY (2017) Fast discrete curvelet transform-based anisotropic feature extraction for biomedical image indexing and retrieval. Int J Multimed Inf Retr 6:281–288CrossRefGoogle Scholar
  14. 14.
    Sudhakar M, Bagan K (2014) An effective biomedical image retrieval framework in a fuzzy feature space employing phase congruency and GeoSOM. Appl Soft Comput 22:492–503CrossRefGoogle Scholar
  15. 15.
    Wang X, Yang H (2015) A new SVM based active feedback scheme for image retrieval. Eng Appl Artif Intell 37:43–53CrossRefGoogle Scholar
  16. 16.
    Ojala T, Pietikainen M, Harwood D (1996) A comparative study of texture measures with classification based on feature distributions. Pattern Recognit 29(1):5159CrossRefGoogle Scholar
  17. 17.
    Li M, Staunton R (2008) Optimum Gabor filter design and local binary patterns for texture segmentation. Pattern Recognit Lett 29:664–672CrossRefGoogle Scholar
  18. 18.
    Liao S, Law M, Chung A (2009) Dominant local binary patterns for texture classification. IEEE Trans Image Process 18(5):1107–1118MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Guo Z, Zhang L, Zhang D (2010) A completed modeling of local binary pattern operator for texture classification. IEEE Trans Image Process 19(6):1657–1663MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Verma M, Raman B (2015) Center symmetric local binary co-occurrence pattern for texture, face and bio-medical image retrieval. J Vis Commun Image Represent 32:224–236CrossRefGoogle Scholar
  21. 21.
    Moore S, Bowden R (2011) Local binary patterns for multi-view facial expression recognition. Comput Vis Image Underst 115:541–558CrossRefGoogle Scholar
  22. 22.
    Ahonen T, Hadid A, Pietikainen M (2006) Face description with local binary patterns: application to face recognition. IEEE Trans Pattern Anal Mach Intell 28(12):2037–2041CrossRefzbMATHGoogle Scholar
  23. 23.
    Huang D, Shan C, Ardabilian M, Wang Y, Chen L (2011) Local binary patterns and its application to facial image analysis: a survey. IEEE Trans Syst Man Cyberns Part C Appl Rev 41(6):765–781CrossRefGoogle Scholar
  24. 24.
    Murala S, Maheshwari R, Balasubramanian R (2012) Local maximum edge binary patterns: a new descriptor for image retrieval and object tracking. Signal Process 92:1467–1479CrossRefzbMATHGoogle Scholar
  25. 25.
    Nanni L, Lumini A (2008) Local binary patterns for a hybrid fingerprint matcher. Pattern Recognit 41:3461–3466CrossRefzbMATHGoogle Scholar
  26. 26.
    Murala S, Jonathan Wu Q (2013) Local ternary co-occurrence patterns: a new feature descriptor for MRI and CT image retrieval. Neurocomputing 119:399–412CrossRefGoogle Scholar
  27. 27.
    Murala S, Jonathan Wu Q (2014) Local mesh patterns versus local binary patterns: biomedical image indexing and retrieval. IEEE J Biomed Health Inform 18(3):929–938CrossRefGoogle Scholar
  28. 28.
    Koteswara Rao L, Venkata Rao D (2015) Local quantized extrema patterns for content based natural and texture image retrieval. Hum Centric Comput Inf Sci 5:26CrossRefGoogle Scholar
  29. 29.
    Deep G, Kaur L, Gupta S (2016) Directional local ternary quantized extrema pattern: a new descriptor for biomedical image indexing and retrieval. Int J Eng Sci Technol 19:1895–1909CrossRefGoogle Scholar
  30. 30.
    Vipparthi S, Murala S, Gonde A, Jonathan Wu Q (2016) Local directional mask maximum edge patterns for image retrieval and face recognition. IET Comput Vis 10(3):182–192CrossRefGoogle Scholar
  31. 31.
    Du S, Yaping Y, Ma Y (2017) LAP a bio-inspired local image structure descriptor and its applications. Multimed Tools Appl 76:13973–13993CrossRefGoogle Scholar
  32. 32.
    Zhao G, Pietikainen M (2007) Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Trans Pattern Anal Mach Intell 29(6):915–928CrossRefGoogle Scholar
  33. 33.
    Nanni L, Brahnam S, Lumini A (2011) Local ternary patterns from three orthogonal planes for human action classification. Expert Syst Appl 38(5):5125–5128CrossRefGoogle Scholar
  34. 34.
    Galshetwar GM, Waghmare LM, Gonde AB, Murala S (2017) Edgy salient local binary patterns in inter-plane relationship for image retrieval in diabetic retinopathy. Procedia Comput Sci 115:440–447CrossRefGoogle Scholar
  35. 35.
    Zhou J, Liu X, Tian-wei X, Gan J, Liu W (2018) A new fusion approach for content based image retrieval with color histogram and local directional pattern. Int J Mach Learn Cybern 9:677–689CrossRefGoogle Scholar
  36. 36.
    Subash Kumar TG, Nagarajan V (2018) Local curve pattern for content-based image retrieval. Pattern Anal Appl 9:1–10Google Scholar
  37. 37.
    Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987CrossRefzbMATHGoogle Scholar
  38. 38.
    Takala V, Ahonen T, Pietikainen M (2005) Block-based methods for image retrieval using local binary patterns. Lect Notes Comput Sci 3450:882–891CrossRefGoogle Scholar
  39. 39.
    Murala S, Jonathan Wu Q (2015) Spherical symmetric 3D local ternary patterns for natural, texture and biomedical image indexing and retrieval. Neurocomputing 149:1502–1514CrossRefGoogle Scholar
  40. 40.
    Murala S, Maheshwari R, Balasubramanian R (2012) Directional binary wavelet patterns for biomedical image indexing and retrieval. J Med Syst 36(5):1467–1479CrossRefGoogle Scholar
  41. 41.
    Yao C, Chen S (2003) Retrieval of translated, rotated, and scaled color textures. Pattern Recognit 36:913–929CrossRefGoogle Scholar
  42. 42.
    Heikkil M, Pietikainen M, Schmid C (2009) Description of interest regions with local binary patterns. Pattern Recognit 42:425–436CrossRefzbMATHGoogle Scholar
  43. 43.
    Tan X, Triggss B (2010) Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans Image Process 19(6):1635–1650MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Zhang B, Gao Y, Zhao S, Liu J (2010) Local derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptor. IEEE Trans Image Process 19(2):533–544MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Murala S, Maheshwari R, Balasubramanian R (2012) Directional local extrema patterns: a new descriptor for content based image retrieval. Int J Multimed Inf Retr 1(3):191–203CrossRefzbMATHGoogle Scholar
  46. 46.
    Marcus DS, Wang T, Parker J, Csernansky J, Morris J, Buckner R (2007) Open access series of imaging studies (OASIS): cross-sectional MRI data in young, middle aged, non-demented, and demented older adults. J Cognit Neurosci 19(9):1498–1507CrossRefGoogle Scholar
  47. 47.
    VIA/I-ELCAP CT lung image dataset.
  48. 48.

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  • Nilima Mohite
    • 1
    Email author
  • Laxman Waghmare
    • 1
  • Anil Gonde
    • 1
  • Santoshkumar Vipparthi
    • 2
  1. 1.Department of ECE, Center of Excellence in Signal and Image Processing (COESIP)SGGSIETNandedIndia
  2. 2.Department of Computer Science and EngineeringMalaviya National Institute of TechnologyJaipurIndia

Personalised recommendations