Image recommendation based on keyword relevance using absorbing Markov chain and image features

  • D. Sejal
  • V. Rashmi
  • K. R. Venugopal
  • S. S. Iyengar
  • L. M. Patnaik
Regular Paper

Abstract

Image recommendation is an important feature of search engine, as tremendous amount of images are available online. It is necessary to retrieve relevant images to meet the user’s requirement. In this paper, we present an algorithm image recommendation with absorbing Markov chain (IRAbMC) to retrieve relevant images for a user’s input query. Images are ranked by calculating keyword relevance probability between annotated keywords from log and keywords of user input query. Keyword relevance is computed using absorbing Markov chain. Images are reranked using image visual features. Experimental results show that the IRAbMC algorithm outperforms Markovian semantic indexing (MSI) method with improved relevance score of retrieved ranked images.

Keywords

Annotation-based image retrieval Content-based image retrieval Image annotation Image recommendation 

References

  1. 1.
    Akbas E, Vural FTY (2007) Automatic image annotation by ensemble of visual descriptors. In: CVPR’07: the proceedings of IEEE conference on computer vision and pattern recognition, pp 1–8Google Scholar
  2. 2.
    Bartolini I, Ciaccia P (2010) Multi-dimensional keyword-based image annotation and search. In: The Proceedings of the 2nd international workshop on keyword search on structured data, pp 5–10Google Scholar
  3. 3.
    Wang C, Jing F, Zhang L, Zhang H-J (2007) Content-based image annotation refinement. In: CVPR’07: the proceedings of IEEE conference on computer vision and pattern recognition, pp 1–8Google Scholar
  4. 4.
    Li J, Wang JZ (2008) Real-time computerized annotation of pictures. IEEE Trans Pattern Anal Mach Intell 30(6):985–1002CrossRefGoogle Scholar
  5. 5.
    Makadia A, Pavlovic V, Kumar S (2008) A new baseline for image annotation. Comput Vis ECCV 2008:316–329Google Scholar
  6. 6.
    Verma Y, Jawahar CV (2012) Image annotation using metric learning in semantic neighbourhoods. Comput Vis ECCV 2012:836–849Google Scholar
  7. 7.
    Wang C, Blei D, Li F-F (2009) Simultaneous image classification and annotation. In: CVPR 2009: the proceedings of IEEE conference on computer vision and pattern recognition, pp 1903–1910Google Scholar
  8. 8.
    Guillaumin M, Mensink T, Verbeek J, Schmid C (2009) Tagprop: discriminative metric learning in nearest neighbor models for image auto-annotation. In: The proceedings of IEEE \(12^{th}\) international conference on computer vision, pp 309–316Google Scholar
  9. 9.
    Stevenson K, Leung C (2005) Comparative evaluation of web image search engines for multimedia applications. In: ICME 2005: the proceedings of IEEE international conference on multimedia and expo, pp 4–14Google Scholar
  10. 10.
    Smyth B (2007) A community-based approach to personalizing web search. IEEE J Comput 40(8):42–50CrossRefGoogle Scholar
  11. 11.
    He X, Cai D, Han J (2008) Learning a maximum margin subspace for image retrieval. IEEE Trans Knowl Data Eng 20(2):189–201CrossRefGoogle Scholar
  12. 12.
    Gao Y, Peng J, Luo H, Keim DA, Fan J (2009) An interactive approach for filtering out junk images from keyword-based google search results. IEEE Trans Circuits Syst Video Technol 19(12):1851–1865CrossRefGoogle Scholar
  13. 13.
    Liu D, Hua KA, Vu K, Yu N (2009) Fast query point movement techniques for large CBIR systems. IEEE Trans Knowl Data Eng 21(5):729–743CrossRefGoogle Scholar
  14. 14.
    Rahman MdM, Antani SK, Thoma GR (2011) A learning-based similarity fusion and filtering approach for biomedical image retrieval using SVM classification and relevance feedback. IEEE Trans Inf Technol Biomed 15(4):640–646CrossRefGoogle Scholar
  15. 15.
    Cheng E, Jing F, Zhang L (2009) A unified relevance feedback framework for web image retrieval. IEEE Trans Image Process 18(6):1350–1357MathSciNetCrossRefGoogle Scholar
  16. 16.
    Kekre HB, Thepade SD, Mukherjee P, Wadhwa S, Kakaiya M, Singh S (2010) Image retrieval with shape features extracted using gradient operators and slope magnitude technique with BTC. Int J Comput Appl 6(8):28–33Google Scholar
  17. 17.
    Guo J-M, Prasetyo H (2015) Content based image retrieval using features extracted from halftoning-based block truncation coding. IEEE Trans Image Process 24(3):1010–1024MathSciNetCrossRefGoogle Scholar
  18. 18.
    Hofmann T (2001) Unsupervised learning by probabilistic latent semantic analysis. J Mach Learn 42(2):177–196CrossRefMATHGoogle Scholar
  19. 19.
    Li Z, Tang Z, Zhao W, Li Z (2012) Combining generative/discriminative learning for automatic image annotation and retrieval. Int J Intell Sci 2(3):55–62CrossRefGoogle Scholar
  20. 20.
    Fan J, Gao Y, Luo H (2008) Integrating concept ontology and multitask learning to achieve more effective classifier training for multilevel image annotation. IEEE Trans Image Process 17(3):407–426MathSciNetCrossRefGoogle Scholar
  21. 21.
    Vompras J, Scholz T, Conrad S (2008) Extracting contextual information from multiuser systems for improving annotation-based retrieval of image data. In: The proceedings of the 1st ACM international conference on multimedia information retrieval, pp 149–155Google Scholar
  22. 22.
    OSullivan D, Wilson DC, Bertolotto M (2011) Task-based annotation and retrieval for image information management. Multimed Tools Appl 54(2):473–497CrossRefGoogle Scholar
  23. 23.
    Deniz Kılınç, Adil Alpkocak (2011) An expansion and reranking approach for annotation-based image retrieval from web. J Expert Syst Appl 38(10):13121–13127CrossRefGoogle Scholar
  24. 24.
    Wang X-J, Zhang L, Ma W-Y (2012) Duplicate search based image annotation using web scale data. IEEE J Electr Eng 100(9):2705–2721MathSciNetGoogle Scholar
  25. 25.
    Riad A, Elminir H, Abd-Elghany S (2012) Web image retrieval search engine based on semantically shared annotation. Int J Comput Sci Issues 9(3):223–228Google Scholar
  26. 26.
    Krishna AN, Prasad BG (2012) Automated image annotation for semantic indexing and retrieval of medical images. Int J Comput Appl 55(3):26–33Google Scholar
  27. 27.
    Ayadi MG, Bouslimi R, Akaichi J (2013) A new CBIR approach for the annotation of medical images. Int J Comput Appl 73(6):34–45Google Scholar
  28. 28.
    Zhang D, Islam MdM, Lu G (2013) Structural image retrieval using automatic image annotation and region based inverted file. J Visual Commun Image Represent 24(7):1087–1098CrossRefGoogle Scholar
  29. 29.
    Sang J, Changsheng X, Dongyuan L (2012) Learn to personalized image search from the photo sharing websites. IEEE Trans Multimed 14(4):963–974CrossRefGoogle Scholar
  30. 30.
    Li L-J, Fei-Fei L (2010) Optimol: automatic online picture collection via incremental model learning. Int J Comput Vis 88(2):147–168CrossRefGoogle Scholar
  31. 31.
    Pham T-T, Maillot NE, Lim J-H, Chevallet J-P (2007) Latent semantic fusion model for image retrieval and annotation. In: The proceedings of the sixteenth ACM conference on information and knowledge management, pp 439–444Google Scholar
  32. 32.
    Song H, Li X, Wang P (2009) Multimodal image retrieval based on annotation keywords and visual content. In: CASE 2009: the proceedings of IEEE international conference on control, automation and systems engineering, pp 295–298Google Scholar
  33. 33.
    Winston WL, Goldberg JB (2004) Operations research: applications and algorithms, vol 3. Duxbury press Belmont, CA, p 1440Google Scholar
  34. 34.
    Raftopoulos KA, Ntalianis KS, Sourlas DD, Kollias SD (2013) Mining user queries with Markov chains: application to online image retrieval. IEEE Trans Knowl Data Eng 25(2):433–447CrossRefGoogle Scholar
  35. 35.
    Shapiro LG (2012) Ground truth database. Washington University. http://imagedatabase.cs.washington.edu/groundtruth/
  36. 36.
    Berry MW, Dumais ST, O’Brien GW (1995) Using linear algebra for intelligent information retrieval. SIAM Rev 37(4):573–595MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Salehian H, Zamani F, Jamzad M (2012) Fast content based color image retrieval system based on texture analysis of edge map. J Adv Mater Res 341:168–172Google Scholar
  38. 38.
    Lux M (2011) Content based image retrieval with LIRe. In: The proceedings of the \(19^{th}\) ACM international conference on multimedia, pp 735–738Google Scholar
  39. 39.
    Huiskes MJ, Lew MS (2008) The MIR flickr retrieval evaluation. In: MIR ’08: proceedings of the 2008 ACM international conference on multimedia information retrievalGoogle Scholar

Copyright information

© Springer-Verlag London 2016

Authors and Affiliations

  • D. Sejal
    • 1
  • V. Rashmi
    • 1
  • K. R. Venugopal
    • 1
  • S. S. Iyengar
    • 2
  • L. M. Patnaik
    • 3
  1. 1.Department of Computer Science and EngineeringUniversity Visvesvaraya College of Engineering, Bangalore UniversityBengaluruIndia
  2. 2.Florida International UniversityMiamiUSA
  3. 3.National Institute of Advanced StudiesBengaluruIndia

Personalised recommendations