Generic multivariate model for color texture classification in RGB color space

  • Ahmed Drissi El MalianiEmail author
  • Mohammed El Hassouni
  • Yannick Berthoumieu
  • Driss Aboutajdine
Regular Paper


This paper presents a new method for modeling magnitudes of dual-tree complex wavelet coefficients, in the context of color texture classification. Based on the characterization of dependency between RGB color components, Gaussian copula associated with Generalized Gamma marginal function is proposed to design the multivariate generalized Gamma density (MG\(\Gamma \)D) modeling. MG\(\Gamma \)D has the advantages of genericity in terms of fitting over a variety of existing joint models. On the one hand, the generalized Gamma density function offers free-shape parameters to characterize a wide range of heavy-tailed densities, i.e., the genericity. On the other hand, the inter-component, inter-band dependency is captured by the Gaussian Copula which offers adapted flexibility. Moreover, this model leads to a closed form for the probabilistic similarity measure in terms of parameters, i.e., Kullback–Leibler divergence. By exploiting the separability between the copula and the marginal spaces, the closed form enables us to minimize the computational time needed to measure the discrepancy between two Multivariate Generalized Gamma densities in comparison to other models which imply using a Monte Carlo method characterized by an expensive time computing. For evaluating the performance of our proposal, a K-nearest neighbor (KNN) classifier is then used to test the classification accuracy. Experiments on different benchmarks using color texture databases are conducted to highlight the effectiveness of the proposed model associated to the Kullback–Leibler divergence.


Classification Texture Copula  Kullback–Leibler divergence 


  1. 1.
    Kingsbury N (1998) The dual-tree complex wavelet transform: a new technique for shift-invariance and directional filters. In: Proceedings of the 8th IEEE DSP workshop, pp 9–12Google Scholar
  2. 2.
    Do M, Vetterli M (2002) Wavelet-based texture retrieval using generalized Gaussian density and Kullback-Leibler distance. IEEE Trans Image Process 11:146–158MathSciNetCrossRefGoogle Scholar
  3. 3.
    Mathiassen J, Skavhaug A, Bø K (2002) Texture similarity measure using Kullback-Leibler divergence between gamma distributions. In: European conference on computer vision 2002, pp 19–49Google Scholar
  4. 4.
    Kwitt R, Uhl A (2008) Image similarity measurement by Kullback-Leibler divergences between complex wavelet subband statistics for texture retrieval. In: 15th IEEE international conference on image Processing (ICIP), pp 933–936Google Scholar
  5. 5.
    EL Maliani AD, EL Hassouni M, Lasmar N, Berthoumieu Y (2010) Texture classification based on the generalized gamma distribution and the dual tree complex wavelet transform. In: 5th international symposium on I/V communications and mobile network (ISIVC), pp 1–4Google Scholar
  6. 6.
    Choy SK, Tong CSG (2010) Statistical wavelet subband characterization based on generalized gamma density and its application in texture retrieval. IEEE Trans Image Process 19:281–289Google Scholar
  7. 7.
    Verdoolaege G, De Backer S, Scheunders P (2008) Multiscale colour texture retrieval using the geodesic distance between multivariate generalized Gaussian models. In: Proceedings of the 15th IEEE international conference on image processing (ICIP’08), pp 169–172Google Scholar
  8. 8.
    Kwitt R, Uhl A (2009) A joint model of complex wavelet coefficients for texture retrieval. In: 16th IEEE international conference on image processing (ICIP), 2009, pp 1877–1880Google Scholar
  9. 9.
    Kwitt R, Meerwald P, Uhl A (2010) Efficient texture image retrieval using Copulas in a Bayesian framework. IEEE Trans Image Process 20:2063–2077MathSciNetCrossRefGoogle Scholar
  10. 10.
    Sakji-Nsibi S, Benazza-Benyahia A (2010) Fast scalable retrieval of multispectral images with kullback-leibler divergence. In: 17th IEEE international conference on image processing (ICIP), 2010, pp 2333–2336Google Scholar
  11. 11.
    MIT vision and modeling group [Online].
  12. 12.
    Nelsen RB (2006) An introduction to Copulas, 2nd edn. Springer Series in Statistics, Springer, BerlinzbMATHGoogle Scholar
  13. 13.
    Sklar M (1959) Fonctions de répartition à \(n\) dimensions et leurs marges. Publications de l’institut de Statistique de l’Université de Paris 8:229–231MathSciNetGoogle Scholar
  14. 14.
    Stacy EW (1962) A generalization of the gamma distribution. Ann Math Stati 33:1187–1192MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Joe H (1997) Multivariate models and dependence concepts. Monographs on Statistics and Applied Probability. Chapman & Hall, LondonCrossRefzbMATHGoogle Scholar
  16. 16.
    Bohdalova M, Nanasiova O (2006) A note to Copula functions. E-leader Bratislava 11:15Google Scholar
  17. 17.
    Embrechts P, McNeil A, Straumann D (1999) Correlation and dependence in risk management: properties and pitfalls. Risk management: value at risk and beyond. Cambridge University Press, Cambridge, pp 176–223Google Scholar
  18. 18.
    Lasmar N, Berthoumieu Y (2014) Gaussian Copula multivariate modeling for image texture retrieval using wavelet transforms. IEEE Trans Image Process (submitted)Google Scholar
  19. 19.
    Cover TM, Hart PE (1967) Nearest neighbor pattern classification. IEEE Trans Inform Theory 13:21–27CrossRefzbMATHGoogle Scholar
  20. 20.
    Stitou Y, Berthoumieu Y, Lasmar N (2009) Copulas based multivariate gamma modeling for texture classification. In: ICASSP, IEEE international conference on acoustics, speech and signal processing 2009, Taipei, Taiwan, April 19–24, 2009, pp 1045–1048Google Scholar
  21. 21.
    Permuter H, Francos J, Jermyn I (2006) A study of gaussian mixture models of color and texture features for image classification and segmentation. Pattern Recognit 39(4):695–706CrossRefzbMATHGoogle Scholar
  22. 22.
    Qazi I, Alata O, Burie JC, Maloigne CF (2010) Color spectral analysis for spatial structure characterization of textures in IHLS color space. Pattern Recognit 43:663–675CrossRefzbMATHGoogle Scholar
  23. 23.
  24. 24.
    Dorizzi B, Andreao RV, Boudy J (2006) ECG signal analysis through hidden Markov models. IEEE Trans Biomed Eng 53(8):1541–1549CrossRefGoogle Scholar
  25. 25.
    Cohen AC, Whitten BJ (1988) Parameter estimation in reliability and life span models. Marcel Dekker, New YorkzbMATHGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Ahmed Drissi El Maliani
    • 1
    Email author
  • Mohammed El Hassouni
    • 2
  • Yannick Berthoumieu
    • 3
  • Driss Aboutajdine
    • 4
  1. 1.L.i.M, FSDMUniversity of Sidi Mohammed Ben AbdellahFezMorocco
  2. 2.DESTEC, FLSHRUniversity of Mohammed V-AgdalRabatMorocco
  3. 3.IPB, IMS, Groupe Signal, UMR 5218Univ. BordeauxTalenceFrance
  4. 4.LRIT, Unité Associée au CNRST (URAC 29)Université Mohammed V-AgdalRabatMorocco

Personalised recommendations