MET: media-embedded target for connecting paper to digital media

  • Qiong Liu
  • Andreas Girgensohn
  • Lynn Wilcox
  • Frank Shipman
  • Tony Dunnigan
Regular Paper


Media-embedded target, or MET, is an iconic mark printed in a blank margin of a page. The mark indicates that a media link is associated with a nearby region of the page. It guides the user to capture a predefined larger region beyond the mark to ensure that the system can retrieve the associated link reliably with enough natural visual features in the captured region. The target also serves to indicate page regions with media. To use an MET, users align the target on paper with a sight of the same shape on the mobile phone display. When the system detects correct alignment, the image is automatically captured by the phone’s camera. Compared to related approaches, an MET provides an indication for the availability of a link without a major visual impact on the page. We compare the use of MET for guiding capture with two standard methods: one that uses a logo to indicate that media content is available and text to define the capture region and another that explicitly indicates the capture region using a visible boundary mark.


Cross-media interaction Paper interface Augmented paper QR code Camera phone Document 


  1. 1.
    Bay H, Ess A, Tuytelaars T, Van Gool L (2008) SURF: speeded up robust features. Comput Vision Image Underst (CVIU) 110(3):346–359CrossRefGoogle Scholar
  2. 2.
    Blippar, blippar, Website:
  3. 3.
    DigiMarc (2011) Enhanced, interactive experiences from media using smartphones,
  4. 4.
    Erol B, Antunez E, Hull JJ. HOTPAPER: multimedia interaction with paper using mobile phones. In: Proceedings of ACM Multimedia’08, pp 399–408Google Scholar
  5. 5.
    Fuji Xerox (2011) Paper fingerprint recognition technology,
  6. 6.
    Girgensohn A, Shipman F, Wilcox L, Liu Q, Liao C, Oneda Y (2011) A tool for authoring unambiguous links from printed content to digital media. In: Proceedings of the 19th ACM international conference on Multimedia (MM ‘11). ACM, New York pp 1561–1564Google Scholar
  7. 7.
    Hare J, Lewis P, Gordon L, Hart G (2008) MapSnapper: engineering an efficient algorithm for matching images of maps from mobile phones. In: Proceedings of multimedia content access: algorithms and systems II, San Jose, California, USA, 30–31 January 2008. SPIE and IS&T, 68200L-1Google Scholar
  8. 8.
    Hartung F, Kutter M (1999) Multimedia watermarking techniques. Proc IEEE 87:1079–1107CrossRefGoogle Scholar
  9. 9.
    Hecht DL (1994) Embedded data glyph technology for hardcopy digital documents. SPIE 2171:341–352Google Scholar
  10. 10.
    Henze N, Boll S (2008) Snap and share your photobooks. In: Proceedings of ACM Multimedia, pp 409–418Google Scholar
  11. 11.
  12. 12.
    Holley R (2009) How good can it get? D-Lib MagazineGoogle Scholar
  13. 13.
    IEEE Computer Scociety (2012) Augmented reality issue of IEEE computer magzineGoogle Scholar
  14. 14.
    Iwamura M, Tsuji T, Kise K. Memory-based recognition of camera-captured characters. In: Proceedings of the 9th IAPR international workshop on document analysis systems (DAS ‘10). ACM, New York pp 89–96Google Scholar
  15. 15.
    Kooaba Shortcut, Application, Webpage:
  16. 16.
    Liu Q, Liao C (2011) PaperUI. In: Proceeding of the 4th international workshop on camera-based document analysis and recognition, pp 3–10Google Scholar
  17. 17.
    Liu QC, Liao L Wilcox, Dunnigan A (2010) Embedded media barcode links: optimally blended barcode overlay on paper for linking to associated media. In: International conference on multimodal interfaces and the workshop on machine learning for multimodal interaction (ICMI-MLMI ‘10). ACM, New YorkGoogle Scholar
  18. 18.
    Liu Q, Liao C, Wilcox L, Dunnigan A, Liew B (2010) Embedded media markers: marks on paper that signify associated media. In: Proceedings of the 15th international conference on intelligent user interfaces (IUI ‘10). ACM, New York pp 149–158Google Scholar
  19. 19.
    Liu Q, Yano H, Kimber D, Liao C, Wilcox L (2009) High accuracy and language independent document retrieval with a fast invariant transform. In: IEEE international conference on multimedia and expo. ICME 2009. pp 386–389 IEEEGoogle Scholar
  20. 20.
    Liu X, Doermann D (2008) Mobile retriever: access to digital documents from their physical source. Int J Doc Anal Recognit 11(1):19–27CrossRefGoogle Scholar
  21. 21.
    Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vision 60(2):91–110CrossRefGoogle Scholar
  22. 22.
    Reilly D, Rodgers M, Argue R et al (2006) Marked-up maps: combining paper maps and electronic information resources. Pers Ubiquitous Comput 10(4):215–226Google Scholar
  23. 23.
    Rekimoto J, Ayatsuka Y (2000) Cybercode: designing augmented reality environments with visual tags. Proc ACM DARE 2000:1–10 Google Scholar
  24. 24.
    Ricoh, Tamago Clicker, Website:
  25. 25.
    Xin Y, Chunyuan L, Qiong L, Kwang-Ting C (2011) Minimum correspondence sets for improving large-scale augmented paper. In: Proceedings of the 10th international conference on virtual reality continuum and its applications in industry (VRCAI ‘11). ACM, New York pp 59–68Google Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Qiong Liu
    • 1
  • Andreas Girgensohn
    • 1
  • Lynn Wilcox
    • 1
  • Frank Shipman
    • 2
  • Tony Dunnigan
    • 1
  1. 1.FX Palo Alto LaboratoryPalo AltoUSA
  2. 2.Department of Computer ScienceTexas A&M UniversityCollege StationUSA

Personalised recommendations