Skip to main content
Log in

Thermal behavior and shape memory properties of PCL blends film with PVC and PMMA polymers

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Shape memory polymers have attracted extensive attention attributable to their characteristics and abundant applications. In this study, shape memory behavior and characterizations of poly(ε-caprolactone) (PCL) blended with poly(vinyl chloride) (PVC) and poly(methylmethacrylate) (PMMA) in different proportions were investigated. Some characteristics of the blended polymers, such as attenuated total reflection (ATR) infrared (IR) spectroscopy, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), SEM, and optical microscopy (OM) were accomplished. Both melting temperature (Tm) and glass transition temperature (Tg) were affected by blending polymers. The Tm was decreased from 57 °C to 51 and 49 °C by adding 30% and 50% of PVC to PCL, respectively; moreover, adding 50% PMMA to PCL reduced the Tm of PCL to 55 °C. The TGA results revealed that the temperatures at which the mass of blended polymers begins to lose sharply depend on the ratio of the constituents. It is found that the PCL has a crystalline structure, while PVC and PMMA have an amorphous structure. Shape recovery was not detected in the PCL:PMMA (1:1) since the PMMA polymer did not dissolve in PCL, and therefore, it prevented the homogeneity of the blend. Besides, a shape memory recovering test was performed for PCL:PVC (7:3), whereby the blend showed an excellent strain recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Liu W, Zhang R, Huang M, Dong X, Xu W, Ray N, Zhu J (2016) Design and structural study of a triple-shape memory PCL/PVC blend. Polymer 104:115–122

    Article  CAS  Google Scholar 

  2. Sokolowski W, Metcalfe A, Hayashi S, Yahia LH, Raymond J (2007) Medical applications of shape memory polymers. Biomed Mater 2:S23

    Article  CAS  PubMed  Google Scholar 

  3. Liu Y, Van Humbeeck J, Stalmans R, Delaey L (1997) Some aspects of the properties of NiTi shape memory alloy. J Alloys Compd 247:115–121

    Article  CAS  Google Scholar 

  4. Jankauskaitė V, Laukaitienė A, Mickus KV (2008) Shape memory properties of poly (ε-caprolactone) based thermoplastic polyurethane secondary blends. Strain 2:26

    Google Scholar 

  5. Li J, Xie T (2010) Significant impact of thermo-mechanical conditions on polymer triple-shape memory effect. Macromolecules 44:175–180

    Article  CAS  Google Scholar 

  6. Li W, Liu Y, Leng J (2016) Triple-shape memory effect of polystyrene based polymer blends. In: Proceedings of the 20th international conference on composite materials (ICCM20), pp 4411-4414

  7. Hu J, Zhu Y, Huang H, Lu J (2012) Recent advances in shape–memory polymers: structure, mechanism, functionality, modeling and applications. Prog Polym Sci 37:1720–1763

    Article  CAS  Google Scholar 

  8. Jenkins A, Kratochvíl P, Stepto R, Suter U (1996) Glossary of basic terms in polymer science (IUPAC recommendations 1996). Pure Appl Chem 68:2287–2311

    Article  CAS  Google Scholar 

  9. Khan I, Mansha M, Jafar Mazumder MA (2018) Polymer Blends. Polym Polym Compos 2018:1–38

    Google Scholar 

  10. Kia HG, Verbrugge MW, Xie T, Rousseau IA (2016) Shape memory polymer containing composite materials. United States patent US 9(406):971

    Google Scholar 

  11. Langer RS, Lendlein A (2002) Shape memory polymers. Google Patents

  12. Haruna H, Pekdemir ME, Tukur A, Coşkun M (2020) Characterization, thermal and electrical properties of aminated PVC/oxidized MWCNT composites doped with nanographite. J Therm Anal Calorim 139:3887–3895

    Article  CAS  Google Scholar 

  13. Chastain SR, Kundu AK, Dhar S, Calvert JW, Putnam AJ (2006) Adhesion of mesenchymal stem cells to polymer scaffolds occurs via distinct ECM ligands and controls their osteogenic differentiation. J Biomed Mater Res A 78:73–85

    Article  PubMed  CAS  Google Scholar 

  14. Xie J, Marijnissen JC, Wang CH (2006) Microparticles developed by electrohydrodynamic atomization for the local delivery of anticancer drug to treat C6 glioma in vitro. Biomaterials 27:3321–3332

    Article  CAS  PubMed  Google Scholar 

  15. Yu WJ, Lin CC (2001) Comparison of protein loaded poly (ε-caprolactone) microparticles prepared by the hot-melt technique. J Microencapsul 18:585–592

    Article  PubMed  Google Scholar 

  16. Campos Ad, Franchetti SMM (2005) Biotreatment effects in films and blends of PVC/PCL previously treated with heat. Braz Arch Biol Technol 48:235–243

    Article  Google Scholar 

  17. Reignier J, Huneault MA (2006) Preparation of interconnected poly (ε-caprolactone) porous scaffolds by a combination of polymer and salt particulate leaching. Polymer 47:4703–4717

    Article  CAS  Google Scholar 

  18. Mareau VH, Prud’Homme RE (2003) Growth rates and morphologies of miscible PCL/PVC blend thin and thick films. Macromolecules 36:675–684

    Article  CAS  Google Scholar 

  19. Jeong HM, Song JH, Lee SY, Kim BK (2001) Miscibility and shape memory property of poly (vinyl chloride)/thermoplastic polyurethane blends. J Mater Sci 36:5457–5463

    Article  CAS  Google Scholar 

  20. Rabani G, Luftmann H, Kraft A (2006) Synthesis and characterization of two shape-memory polymers containing short aramid hard segments and poly (ε-caprolactone) soft segments. Polymer 47:4251–4260

    Article  CAS  Google Scholar 

  21. Chen T, Kusy R (1997) Effect of methacrylic acid: methyl methacrylate monomer ratios on polymerization rates and properties of polymethyl methacrylates. J Biomed Mater Res 36:190–199

    Article  CAS  PubMed  Google Scholar 

  22. Abdelrazek E, Hezma A, El-Khodary A, Elzayat A (2016) Spectroscopic studies and thermal properties of PCL/PMMA biopolymer blend. Egypt J Basic Appl Sci 3:10–15

    Google Scholar 

  23. Ma W, Zhang J, Wang X, Wang S (2007) Effect of PMMA on crystallization behavior and hydrophilicity of poly (vinylidene fluoride)/poly (methyl methacrylate) blend prepared in semi-dilute solutions. ApSS 253:8377–8388

    CAS  Google Scholar 

  24. Si H, Sato T, Tominaga Y, Asai S, Sumita M (2006) The effect of high-pressure carbon dioxide treatment on the crystallization behavior and mechanical properties of poly (l-lactic acid)/poly (methyl methacrylate) blends. Polymer 47:3954–3960

    Article  CAS  Google Scholar 

  25. Agari Y, Anan Y, Nomura R, Kawasaki Y (2007) Estimation of the compositional gradient in a PVC/PMMA graded blend prepared by the dissolution–diffusion method. Polymer 48:1139–1147

    Article  CAS  Google Scholar 

  26. Aouachria K, Belhaneche-Bensemra N (2006) Miscibility of PVC/PMMA blends by vicat softening temperature, viscometry, DSC and FTIR analysis. Polym Test 25:1101–1108

    Article  CAS  Google Scholar 

  27. Zhou C, Si QB, Ao YH, Tan ZY, Sun SL, Zhang MY, Zhang HX (2007) Effect of matrix composition on the fracture behavior of rubber-modified PMMA/PVC blends. Polym Bull 58:979–988

    Article  CAS  Google Scholar 

  28. Al-Mulla A, Shaban HI (2007) Degradation kinetics of poly (ethylene terephthalate) and poly (methyl methacrylate) blends. Polym Bull 58:893–902

    Article  CAS  Google Scholar 

  29. Kailas L, Bertrand P (2006) End group effect on surface and interfacial segregation in PS-PMMA blend thin films. ApSS 252:6648–6651

    CAS  Google Scholar 

  30. Jin X, Zhang S, Runt J (2004) Broadband dielectric investigation of amorphous poly (methyl methacrylate)/poly (ethylene oxide) blends. Macromolecules 37:8110–8115

    Article  CAS  Google Scholar 

  31. Yılmaz S, Coşkun M (2017) Thermal and electrical behaviors of acid functionalized MWCNT/ABC-type triblock copolymer grafted-MWCNT nanocomposites. J Macromol Sci A 54:791–795

    Article  CAS  Google Scholar 

  32. Lipik VT, Abadie MJ (2010) Process optimization of poly (ε-caprolactone) synthesis by ring opening polymerization. Iran Polym J 19:885–893

    CAS  Google Scholar 

  33. Balke TS (1972) The free radical polymerization of methyl methacrylate to high conversions. Doctoral Dissertation, Open Access Dissertations and Theses Community

  34. Pekdemir ME (2020) Poli (Vinil klorür)/Fe3o4 manyetik nanopartikül kompozitlerinin sentezi, termal ve elektriksel özelliklerinin incelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 20:802–809

    Google Scholar 

  35. Pekdemi̇r M, Coşkun M (2020) Manyetik Fe3O4 nanopartiküllerinin siyanurik klorür yoluyla poli (ε-kaprolakton)’ a bağlanmasi, termal ve manyetik özelliklerinin incelenmesi. J Inst Sci Technol 10:2730–2739

    Article  Google Scholar 

  36. David G, Turin-Moleavin I, Ursu LE, Peptanariu D, Ailincai D (2018) Multilayer biopolymer/poly (ε-caprolactone)/polycation nanoparticles. Iran Polym J 27:517–526

    Article  CAS  Google Scholar 

  37. Ahmadi M, Behzad T, Bagheri R (2017) Reinforcement effect of poly (methyl methacrylate)-g-cellulose nanofibers on LDPE/thermoplastic starch composites: preparation and characterization. Iran Polym J 26:733–742

    Article  CAS  Google Scholar 

  38. Kok M, Demirelli K, Aydogdu Y (2008) Thermophysical properties of blend of poly (vinyl chloride) with poly (isobornyl acrylate). Int J Sci Technol 3:37–42

    Google Scholar 

  39. Meng H, Li G (2013) A review of stimuli-responsive shape memory polymer composites. Polymer 54:2199–2221

    Article  CAS  Google Scholar 

  40. Mather PT, Luo X, Rousseau IA (2009) Shape memory polymer research. Annu Rev Mater Res 39:445–471

    Article  CAS  Google Scholar 

  41. Zhang H, Wang H, Zhong W, Du Q (2009) A novel type of shape memory polymer blend and the shape memory mechanism. Polymer 50:1596–1601

    Article  CAS  Google Scholar 

  42. Hayashi S, Fujimura H (1991) Shape memory polymer foam. Google Patents

  43. Balu R, Kumar T, Ramalingam M, Ramakrishna S (2011) Electrospun polycaprolactone/poly (1, 4-butylene adipate-co-polycaprolactam) blends: potential biodegradable scaffold for bone tissue regeneration. J Biomater Tissue Eng 1:30–39

    Article  Google Scholar 

  44. Thomas S, Grohens Y, Jyotishkumar P (2014) Characterization of polymer blends: miscibility, morphology and interfaces. John Wiley & Sons, New York

    Book  Google Scholar 

  45. Kong Y, Ma Y, Lei L, Wang X, Wang H (2017) Crystallization of poly (ε-caprolactone) in poly (vinylidene fluoride)/poly (ε-caprolactone) blend. Polymers 9:42

    Article  PubMed Central  CAS  Google Scholar 

  46. Ajami Henriquez D, Rodríguez M, Sabino M, Castillo RV, Müller AJ, Boschetti de Fierro A, Abetz C, Abetz V, Dubois P (2008) Evaluation of cell affinity on poly (L-lactide) and poly (ε-caprolactone) blends and on PLLA-b-PCL diblock copolymer surfaces. J Biomed Mater Res A 87:405–417

    Article  PubMed  CAS  Google Scholar 

  47. Santos J Jr, Pita V, Melo P, Nele M, Pinto J (2013) Effect of process variables on the preparation of artificial bone cements. Braz J Chem Eng 30:865–876

    Article  CAS  Google Scholar 

  48. Dixit M, Mathur V, Gupta S, Baboo M, Sharma K, Saxena N (2009) Investigation of miscibility and mechanical properties of PMMA/PVC blends. J Optoelectron Adv Mater Rapid Commun 3:1099–1105

    CAS  Google Scholar 

  49. Wu BM, Borland SW, Giordano RA, Cima LG, Sachs EM, Cima MJ (1996) Solid free-form fabrication of drug delivery devices. J Controlled Release 40:77–87

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Ersin Pekdemir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pekdemir, M.E., Öner, E., Kök, M. et al. Thermal behavior and shape memory properties of PCL blends film with PVC and PMMA polymers. Iran Polym J 30, 633–641 (2021). https://doi.org/10.1007/s13726-021-00919-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-021-00919-8

Keywords

Navigation