Advertisement

Iranian Polymer Journal

, Volume 28, Issue 4, pp 271–282 | Cite as

Effect of hydrolyzed collagen on thermal, mechanical and biological properties of poly(lactic acid) bionanocomposites

  • Maria RapaEmail author
  • Laura M. Stefan
  • Petruta Preda
  • Raluca N. Darie-Nita
  • Alexandra Gaspar-Pintiliescu
  • Ana M. Seciu
  • Cornelia Vasile
  • Ecaterina Matei
  • Andra Mihaela Predescu
Original Research
  • 47 Downloads

Abstract

Bionanocomposites based on poly(lactic acid) (PLA), plasticized with commercial tributyl o-acetyl citrate (ATBC) and containing hydrolyzed collagen (HC) up to 10 wt% and silver nanoparticles (AgNPs), were prepared by a melt mixing procedure. The properties of antimicrobial PLA based formulations were investigated in terms of morphology (atomic force microscopy, AFM), mechanical, thermal (differential scanning calorimetry, DSC), spectral (by attenuated total reflectance, Fourier-transform infrared spectroscopy), cell proliferation (by flow cytometry) and immunohistochemical properties induced by collagen. The incorporation of HC into antimicrobial PLA biocomposites led to the slight reduction both in mechanical properties and the degree of crystallinity with respect to those of PLA/ATBC sample. These properties can be attributed to the smooth surface improvement of the bionanocomposite. In vitro testing using L929 fibroblasts in the presence of PLA-based bionanocomposites showed that all samples presented good biocompatibility, as it was indicated by the cell cycle distribution and DNA content analyses. Furthermore, these new biocomposites induced an increase of collagen production in vitro. Overall, PLA/HC5/AgNPs and PLA/HC10/AgNPs bionanocomposites showed very good in vitro biocompatibility, and therefore, could be considered as valuable materials for medical devices, such as tubes, catheters, drains or connectors, with a relatively long service life.

Keywords

Biopolymers Nanocomposites In vitro testing Degree of crystallinity Biomedical applications 

Notes

Acknowledgements

This work was supported by a grant of the Romanian National Authority for Scientific Research, CNDI-UEFISCDI, project number of 164/2012.

References

  1. 1.
    Hill SS, Shaw BR, Wu AHB (2001) The clinical effects of plasticizers, antioxidants, and other contaminants in medical polyvinylchloride tubing during respiratory and non-respiratory exposure. Clin Chim Acta 304:1–8CrossRefGoogle Scholar
  2. 2.
    Knetsch MLW, Koole LH (2011) New strategies in the development of antimicrobial coatings: the example of increasing usage of silver and silver nanoparticles. Polymers 3:340–366CrossRefGoogle Scholar
  3. 3.
    Prabhu S, Poulose EK (2012) Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2:32CrossRefGoogle Scholar
  4. 4.
    Cacciotti I, Fortunati E, Puglia D, Kenny JM, Nanni F (2014) Effect of silver nanoparticles and cellulose nanocrystals on electrospun poly(lactic) acid mats: morphology, thermal properties and mechanical behavior. Carbohydr Polym 103:22–31CrossRefGoogle Scholar
  5. 5.
    Patiňo JH, Henríquez LE, Restrepo D, Mendoza MP, Lantero MI, García MA (2014) Evaluation of polyamide composite casings with silver–zinc crystals for sausages packaging. Food Pack Shelf Life 1:3–9CrossRefGoogle Scholar
  6. 6.
    Ramos M, Fortunati E, Peltzer M, Dominici F, Jiménez A, Garrigós MC, Kenny JM (2014) Influence of thymol and silver nanoparticles on the degradation of poly(lactic acid) based nanocomposites: thermal and morphological properties. Polym Degrad Stab 108:158–165CrossRefGoogle Scholar
  7. 7.
    Armentano I, Bitinis N, Fortunati E, Mattioli S, Rescignano N, Verdejo R, Lopez-Manchado MA, Kenny JM (2013) Multifunctional nanostructured PLA materials for packaging and tissue engineering. Prog Polym Sci 38:1720–1747CrossRefGoogle Scholar
  8. 8.
    Li DX, Guo G, Fan RR, Liang J, Deng X, Luo F, Qian ZY (2013) PLA/F68/dexamethasone implants prepared by hot-melt extrusion for controlled release of anti-inflammatory drug to implantable medical devices. I. Preparation, characterization and hydrolytic degradation study. Int J Pharm 441:365–372CrossRefGoogle Scholar
  9. 9.
    Frydrych M, Román S, MacNeil S, Chen B (2015) Biomimetic poly(glycerol sebacate)/poly(L-lactic acid) blend scaffolds for adipose tissue engineering. Acta Biomater 18:40–49CrossRefGoogle Scholar
  10. 10.
    Shah SR, Tatara AM, D’Souza RN, Mikos AG, Kasper FK (2013) Evolving strategies for preventing biofilm on implantable materials. Mater Today 16:177–182CrossRefGoogle Scholar
  11. 11.
    Vert M (2015) After soft tissues, bone, drug delivery and packaging, PLA aims at blood. Eur Polym J 68:516–525CrossRefGoogle Scholar
  12. 12.
    Nampoothiri KM, Nair NR, John RP (2010) An overview of the recent developments in polylactide (PLA) research. Bioresour Technol 101:8493–8501CrossRefGoogle Scholar
  13. 13.
    Hassouna F, Raquez JM, Addiego F, Dubois P, Toniazzo V, Ruch D (2011) New approach on the development of plasticized polylactide (PLA): grafting of poly(ethylene glycol) (PEG) via reactive extrusion. Eur Polym J 47:2134–2144CrossRefGoogle Scholar
  14. 14.
    Darie-Nita RN, Vasile C, Irimia A, Lipsa R, Rapa M (2016) Evaluation of some eco-friendly plasticizers for PLA films processing. J Appl Polym Sci 133:1–11CrossRefGoogle Scholar
  15. 15.
    Tanrattanakul V, Bunkaew P (2014) Effect of different plasticizers on the properties of bio-based thermoplastic elastomer containing poly(lactic acid) and natural rubber. Express Polym Lett 8:387–396CrossRefGoogle Scholar
  16. 16.
    Kfoury G, Raquez JM, Hassouna F, Odent J, Toniazzo V, Ruch D, Dubois P (2013) Recent advances in high performance poly(lactide): from “green” plasticization to super-tough materials via (reactive) compounding. Front Chem 1:1–46CrossRefGoogle Scholar
  17. 17.
    Tsou CH, Suen MC, Yao WH, Yeh JT, Wu CS, Tsou CY, Chiu SH, Chen JC, Wang RY, Lin SM, Hung WS, De Guzman M, Hu CC, Lee KR (2014) Preparation and characterization of bioplastic-based green renewable composites from tapioca with acetyl tributyl citrate as a plasticizer. Materials 7:5617–5632CrossRefGoogle Scholar
  18. 18.
    Wu CS (2015) Influence of modified polyester on the material properties of collagen-based biocomposites and in vitro evaluation of cytocompatibility. Mater Sci Eng C 48:310–319CrossRefGoogle Scholar
  19. 19.
    Nam K, Kimura T, Funamoto S, Kishida A (2010) Preparation of a collagen/polymer hybrid gel for tissue membranes. Part II. In vitro and in vivo biological properties of the collagen gels. Acta Biomater 6:409–417CrossRefGoogle Scholar
  20. 20.
    Buttafoco L, Kolkman NG, Engbers-Buijtenhuijs P, Poot AA, Dijkstra PJ, Vermes I, Feijen J (2006) Electrospinning of collagen and elastin for tissue engineering applications. Biomaterials 27:724–734CrossRefGoogle Scholar
  21. 21.
    Mlyniec A, Tomaszewski KA, Spiesz EM, Uhl T (2015) Molecular-based nonlinear viscoelastic chemomechanical model incorporating thermal denaturation kinetics of collagen fibrous biomaterials. Polym Degrad Stab 119:87–95CrossRefGoogle Scholar
  22. 22.
    Luo X, Guo Z, He P, Chen T, Li L, Ding S, Li H (2018) Study on structure, mechanical property and cell cytocompatibility of electrospun collagen nanofibers crosslinked by common agents. Int J Biol Macromol 113:476–486CrossRefGoogle Scholar
  23. 23.
    Zhang D, Wu X, Chen J, Lin K (2018) The development of collagen based composite scaffolds for bone regeneration. Bioactive Mater 3:129–138CrossRefGoogle Scholar
  24. 24.
    Kang Y, Chen P, Shi X, Zhang G, Wang C (2018) Multilevel structural stereocomplex polylactic acid/collagen membranes by pattern electrospinning for tissue engineering. Polymer 156:250–260CrossRefGoogle Scholar
  25. 25.
    Bellini D, Cencetti C, Sacchetta AC, Battista AM, Martinelli A, Mazzucco L, Scotto D’Abusco A, Matricardi P (2016) PLA-grafting of collagen chains leading to a biomaterial with mechanical performances useful in tendon regeneration. J Mech Behav Biomed Mater 64:151–160CrossRefGoogle Scholar
  26. 26.
    Stoica P, Rapa M, Chifiriuc MC, Lungu M, Tatia R, Nita MI, Grumezescu AM, Bertesteanu S, Bezirtzoglou E, Lazar V (2015) Antifungal bionanocomposites based on poly(lactic acid) and silver nanoparticles for potential medical devices. Roman Biotechnol Lett 20:10696–10707Google Scholar
  27. 27.
    Darie-Niță RN, Munteanu BS, Tudorachi N, Lipșa R, Stoleru E, Spiridon I, Vasile C (2016) Complex poly(lactic acid)-based biomaterial for urinary catheters. I. Influence of AgNP on properties. Bioinspired Biomimetic Nanobiomater 5:132–151CrossRefGoogle Scholar
  28. 28.
    Stoleru E, Munteanu BS, Darie-Niță RN, Pricope GM, Lungu M, Irimia A, Râpă M, Lipșa RD, Vasile C (2016) Complex poly(lactic acid)-based biomaterial for urinary catheters. II Biocompatibility Bioinspired Biomimetic Nanobiomater 5:152–166CrossRefGoogle Scholar
  29. 29.
    Lipsa R, Tudorachi N, Darie-Nita RN, Oprica L, Vasile C, Chiriac A (2016) Biodegradation of poly(lactic acid) and some of its based systems with Trichoderma viride. Int J Biol Macromol 88:515–526CrossRefGoogle Scholar
  30. 30.
    Kalb B, Pennings AJ (1980) General crystallization behaviour of poly(l-lactic acid). Polymer 21:607–612CrossRefGoogle Scholar
  31. 31.
    Craciunescu O, Constantin D, Gaspar A, Toma L, Utoiu E, Moldovan L (2012) Evaluation of antioxidant and cytoprotective activities of Arnica montana L. and Artemisia absinthium L. ethanolic extracts. Chem Cent J 6:97CrossRefGoogle Scholar
  32. 32.
    Ge PF, Zhang JZ, Wang XF, Meng FK, Li WC, Luan YX, Ling F, Luo YN (2009) Inhibition of autophagy induced by proteasome inhibition increases cell death in human SHG-44 glioma cells. Acta Pharmacol Sin 30:1046–1052CrossRefGoogle Scholar
  33. 33.
    Craciunescu O, Tardei C, Moldovan L, Zarnescu O (2011) Magnesium substitution effect on porous scaffolds for bone repair. Central Eur J Biol 6:301–311Google Scholar
  34. 34.
    Lareu RR, Zeugolis DI, Abu-Rub M, Pandit A, Raghunath M (2010) Essential modification of the Sircol Collagen Assay for the accurate quantification of collagen content in complex protein solutions. Acta Biomater 6:3146–3151CrossRefGoogle Scholar
  35. 35.
    Araque-Monrós MC, Vidaurre A, Gil-Santos L, Gironés Bernabé S, Monleón-Pradas M, Más-Estellés J (2013) Study of the degradation of a new PLA braided biomaterial in buffer phosphate saline, basic and acid media, intended for the regeneration of tendons and ligaments. Polym Degrad Stab 98:1563–1570CrossRefGoogle Scholar
  36. 36.
    Stylianou A (2017) Atomic force microscopy for collagen-based nanobiomaterials. J Nanomater 2017:9234627CrossRefGoogle Scholar
  37. 37.
    Hassouna F, Raquez JM, Addiego F, Toniazzo V, Dubois P, Ruch D (2012) New development on plasticized poly(lactide): chemical grafting of citrate on PLA by reactive extrusion. Eur Polym J 48:404–415CrossRefGoogle Scholar
  38. 38.
    Ahmed J, Arfat YA, Castro-Aguirre E, Auras R (2016) Mechanical, structural and thermal properties of Ag–Cu and ZnO reinforced polylactide nanocomposite films. Int J Biol Macromol 86:885–892CrossRefGoogle Scholar
  39. 39.
    Ma P, Jiang L, Yu M, Dong W, Chen M (2016) Green antibacterial nanocomposites from poly(lactide)/poly(butylene adipate-co-terephthalate)/nanocrystal cellulose/silver nanohybrids. ACS Sustain Chem Eng 4:6417–6426CrossRefGoogle Scholar
  40. 40.
    Rapa M, Darie-Nita RN, Vasile C (2017) Influence of plasticizers over some physico-chemical properties of PLA. Mater Plast 54:73–78Google Scholar
  41. 41.
    Râpă M, Miteluț AC, Tanase EE, Grosu E, Popescu P, Popa ME, Rosnes JT, Sivertsvik M, Darie-Nita RN, Vasile C (2016) Influence of chitosan on mechanical, thermal, barrier and antimicrobial properties of PLA-biocomposites for food packaging. Compos B Eng 102:112–121CrossRefGoogle Scholar
  42. 42.
    Kwan KHL, Liu X, Yeung KWK, Ho C, To MKT, Wong KKY (2011) Modulation of collagen alignment by silver nanoparticles results in better mechanical properties in wound healing. Nanomed-Nanotechnol 7:497–504CrossRefGoogle Scholar
  43. 43.
    Castro-Mayorga JL, Fabra MJ, Cabedo L, Lagaron JM (2017) On the use of the electrospinning coating technique to produce antimicrobial polyhydroxyalkanoate materials containing in situ-stabilized silver nanoparticles. Nanomaterials 7(1):4CrossRefGoogle Scholar
  44. 44.
    Sastri VR (2014) Plastics in medical devices. Properties, requirements and applications. Elsevier, Amsterdam, pp 19–31CrossRefGoogle Scholar
  45. 45.
    Irawan V, Sung TC, Higuchi A, Ikoma T (2018) Collagen scaffolds in cartilage tissue engineering and relevant approaches for future development. J Tissue Eng Regen Med 15:673–697CrossRefGoogle Scholar
  46. 46.
    Lin HY, Chen HH, Chang SH, Ni TS (2013) Pectin-chitosan-PVA nanofibrous scaffold made by electrospinning and its potential use as a skin tissue scaffold. J Biomater Sci Polym Ed 24:470–484CrossRefGoogle Scholar
  47. 47.
    Mariggiò MA, Cassano A, Vinella A, Vincenti A, Fumarulo R, Lo Muzio L, Maiorano E, Ribatti D, Favia G (2009) Enhancement of fibroblast proliferation, collagen biosynthesis and production of growth factors as a result of combining sodium hyaluronate and aminoacids. Int J Immunopathol Pharmacol 22:485–492CrossRefGoogle Scholar
  48. 48.
    Eleswarapu SV, Responte DJ, Athanasiou KA (2011) Tensile properties, collagen content, and crosslinks in connective tissues of the immature knee joint. PLOS One 6:e26178CrossRefGoogle Scholar
  49. 49.
    Scavone M, Armentano I, Fortunati E, Cristofaro F, Mattioli S, Torre L, Kenny J, Imbriani M, Arciola C, Visai L (2016) Antimicrobial properties and cytocompatibility of PLGA/Ag nanocomposites. Materials 9:37CrossRefGoogle Scholar
  50. 50.
    Cui M, Liu L, Guo N, Su R, Ma F (2015) Preparation, cell compatibility and degradability of collagen-modified poly(lactic acid). Molecules 20:595–607CrossRefGoogle Scholar
  51. 51.
    Tokiwa Y, Calabia BP (2006) Biodegradability and biodegradation of poly(lactide). Appl Microbiol Biotechnol 72:244–251CrossRefGoogle Scholar
  52. 52.
    Chandra R (1998) Biodegradable polymers. Prog Polym Sci 23:1273–1335CrossRefGoogle Scholar

Copyright information

© Iran Polymer and Petrochemical Institute 2019

Authors and Affiliations

  • Maria Rapa
    • 1
    • 2
    Email author
  • Laura M. Stefan
    • 3
  • Petruta Preda
    • 2
  • Raluca N. Darie-Nita
    • 4
  • Alexandra Gaspar-Pintiliescu
    • 3
  • Ana M. Seciu
    • 3
  • Cornelia Vasile
    • 4
  • Ecaterina Matei
    • 5
  • Andra Mihaela Predescu
    • 5
  1. 1.S.C. ICPAO S.A.MediasRomania
  2. 2.S.C. IC.P.E. BISTRITA S.A.BistritaRomania
  3. 3.The National Institute of Research and Development for Biological SciencesBucharestRomania
  4. 4.Department of Physical Chemistry of Polymers“Petru Poni” Institute of Macromolecular ChemistryIasiRomania
  5. 5.Center of Research and Eco-Metallurgical ExpertisePolitehnica University of BucharestBucharestRomania

Personalised recommendations