Iranian Polymer Journal

, Volume 25, Issue 4, pp 295–307 | Cite as

Polyethylene materials with multifunctional surface properties by electrospraying chitosan/vitamin E formulation destined to biomedical and food packaging applications

  • Elena Stoleru
  • Silvestru B. Munteanu
  • Raluca P. Dumitriu
  • Adina Coroaba
  • Mioara Drobotă
  • Lidija Fras Zemljic
  • Gina M. Pricope
  • Cornelia Vasile
Original Paper


A dual-bioactive layer based on antimicrobial chitosan and antioxidant vitamin E was immobilized onto PE surface using electrospraying as coating technique. Covalent bonding of the antibacterial/antioxidant layer was achieved through amide bonds or carbamate linkage using both 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride and N-hydroxysuccinimide or carbonyldiimidazole coupling agents, respectively. The chitosan/vitamin E formulation was characterized by rheological measurements. The vitamin E addition in chitosan matrix leads to changes in chitosan rheological properties, such as viscosity decrease with increasing vitamin E content, change of the gel-like behavior to a fluid-like behavior, which further influences the electrospraying process and deposited coating morphology. The new stratified hybrid materials with improved properties have been characterized by different techniques as attenuated total reflectance-Fourier transform IR spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS), polyelectrolyte and potentiometric titration, contact angle titration, scanning electron microscopy (SEM) and antibacterial and antioxidative tests. The electrosprayed bioactive coatings exhibit antibacterial, antioxidant and pH responsive activity. The pH responsiveness was evidenced by switching from hydrophilic to hydrophobic surface at pH ≈ 6. The chitosan/vitamin E modified PE substrate inhibited the growth for three different bacterial strains (Gram-negative and Gram-positive) and presented good antioxidative properties, acting as DPPH radical scavenging surfaces. Moreover, the new obtained materials present good stability and maintain their antioxidative capacity even after subjecting to desorption in harsh medium because of relative strong electrostatic and hydrogen bonds interactions between components of the formulation. The obtained materials can find application in food packaging or in medical field where synergistic action of these bioactive compounds is required.


Polyethylene Chitosan Electrospraying Antioxidant Stimuli-sensitive surface Food packaging 



The authors acknowledge the financial support given by Romanian CNCS through the project BIONANOMED 164/2012, by International Atomic Energy Agency (IAEA) through research Project No. 17689/2013 and also by COST Action FA0904.

Supplementary material

13726_2016_421_MOESM1_ESM.doc (2.6 mb)
Supplementary material 1 (DOC 2647 kb)


  1. 1.
    Arrua D, Strumia MC, Nazareno MA (2010) Immobilization of caffeic acid on a polypropylene film: synthesis and antioxidant properties. J Agric Food Chem 58:9228–9234CrossRefGoogle Scholar
  2. 2.
    Tian F, Decker EA, Goddard JM (2012) Control of lipid oxidation by nonmigratory active packaging films prepared by photoinitiated graft polymerization. J Agric Food Chem 60:2046–2052CrossRefGoogle Scholar
  3. 3.
    Hellmann M, Mehta SD, Bishai DM, Mears SC, Zenilman JM (2010) The estimated magnitude and direct hospital costs of prosthetic joint infections in the United States, 1997–2004. J Arthroplast 25:766–771CrossRefGoogle Scholar
  4. 4.
    Ponce AG, Roura SI, del Valle CE, Moreira MR (2008) Antimicrobial and antioxidant activities of edible coatings enriched with natural plant extracts: in vitro and in vivo studies. Postharvest Bio Tec 49:294–300CrossRefGoogle Scholar
  5. 5.
    Vasile C (2003) Handbook of polyolefins, 2nd edn. Marcel Dekker, New YorkGoogle Scholar
  6. 6.
    Vladkova TG (2010) Surface engineered polymeric biomaterials with improved biocontact properties. Int J Polym Sci 296094:1–22CrossRefGoogle Scholar
  7. 7.
    Strobel M, Lyons CS, Mittal KL (1994) Plasma surface modification of polymer: relevance to adhesion. VSP, UtrechtGoogle Scholar
  8. 8.
    Goddard JM, Hotchkiss JH (2008) Tailored functionalization of low-density polyethylene surfaces. J Appl Polym Sci 108:2940–2949CrossRefGoogle Scholar
  9. 9.
    Elsabee MZ, Abdou ES, Nagy KSA, Eweis M (2008) Surface modification of polypropylene films by chitosan and chitosan/pectin multilayer. Carbohyd Polym 71(2):187–195CrossRefGoogle Scholar
  10. 10.
    Denes F (1997) Synthesis and surface modification by macromolecular plasma chemistry. Trends Polym Sci 5:23–31Google Scholar
  11. 11.
    Yenilmez E, Başaran E, Yazan Y (2011) Release characteristics of vitamin E incorporated chitosan microspheres and in vitro or in vivo evaluations for topical application. Carbohyd Polym 84:807–811CrossRefGoogle Scholar
  12. 12.
    Jaworek A (2007) Electrospray droplet sources for thin film deposition. J Mat Sci 42:266–297CrossRefGoogle Scholar
  13. 13.
    Salata OV (2005) Tools of nanotechnology: electrospray. Curr Nanosci 1:25–33Google Scholar
  14. 14.
    Savard T, Beauliu C, Boucher I, Champagne CP (2002) Antimicrobial action of hydrolyzed chitosan against spoilage yeasts and lactic acid bacteria of fermented vegetables. J Food Protect 65:828–833Google Scholar
  15. 15.
    Rabea EI, Badawy MET, Stevens CV, Smagghe G, Steurbauta W (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4:1457–1465CrossRefGoogle Scholar
  16. 16.
    Burton GW, Traber MG (1990) Vitamin E: antioxidant activity, biokinetics, and bioavailability. Annu Rev Nutr 10:357–382CrossRefGoogle Scholar
  17. 17.
    Yazdani Pedran M, Reutert J (1997) Homogeneous grafting reaction of vynil pyrrolidone onto chitosan. J Appl Polym Sci 63:1321–1326CrossRefGoogle Scholar
  18. 18.
    Yamane S, Iwasaki N, Majima T, Funakoshi T, Masuko T, Harada K, Minami A, Monde K, Nishimura S (2005) Feasibility of chitosan-based hyaluronic acid hybrid biomaterial for a novel scaffold in cartilage tissue engineering. Biomaterials 26:611–619CrossRefGoogle Scholar
  19. 19.
    Milosavljević BN, Kljajević ML, Popović GI, Filipović MJ, Krusić KT (2010) Chitosan, itaconic acid and poly(vinyl alcohol) hybrid polymer network of high degree of swelling and good mechanical strength. Polym Int 59:686–694Google Scholar
  20. 20.
    Li Z, Ramay HR, Hauch KD, Xiao D, Zhang M (2005) Chitosan-alginate hybrid scaffold for bone tissue engineering. Biomaterials 26:3919–3928CrossRefGoogle Scholar
  21. 21.
    Correlo MV, Boesel LF, Bhattacharya M, Mano JF, Neves NM, Reis RL (2005) Properties of melt processed chitosan and aliphatic polyester blends. Mater Sci Eng, A 403:57–68CrossRefGoogle Scholar
  22. 22.
    Dalton PD, Grafahrend D, Klinkhammer K, Klee D, Moller M (2007) Electrospinning of polymer melts: phenomenological observations. Polymer 48:6823–6833CrossRefGoogle Scholar
  23. 23.
    Homayoni H, Ravandi SAH, Valizadeh M (2009) Electrospinning of chitosan nanofibers: processing optimization. Carbohyd Polym 77:656–661CrossRefGoogle Scholar
  24. 24.
    Anderson GW, Paul R (1958) N, N′-Carbonyldiimidazole, a new reagent for peptide synthesis. J Am Chem Soc 80:4423CrossRefGoogle Scholar
  25. 25.
    Munteanu BS, Pâslaru E, Zemljic LF, Sdrobiş A, Pricope GM, Vasile C (2014) Chitosan coatings applied to polyethylene surface to obtain food-packaging materials. Cell Chem Technol 48:565–575Google Scholar
  26. 26.
    Abonyi O, Uzoegwu PN, Ani CC, Uroko RI, Ezugwu AL, Onyemuche TN, Igwe C, Anigbogu JU (2014) In vitro antioxidant profile of methanol leaf extract of Securidaca longepedunculata. IOSR JDMS 13:75–84Google Scholar
  27. 27.
    Gherraf N, Ladjel S, Labed B, Hameurlaine S (2011) Evaluation of antioxidant potential of various extracts of Traganum nudatum Del. Plant Sci Feed 1:155–159Google Scholar
  28. 28.
    Rošic R, Pelipenko J, Kocbek P, Baumgartner S, Bešter-Rogač M, Kristl J (2012) The role of rheology of polymer solutions in predicting nanofiber formation by electrospinning. Eur Polym J 48:1374–1384CrossRefGoogle Scholar
  29. 29.
    Lin SJ, Pascall MA (2014) Incorporation of vitamin E into chitosan and its effect on the film forming solution (viscosity and drying rate) and the solubility and thermal properties of the dried film. Food Hydrocoll 35:78–84CrossRefGoogle Scholar
  30. 30.
    Che Man YB, Ammawath W, Mirghani MES (2005) Determining α-tocopherol in refined bleached and deodorized palm olein by Fourier transform infrared spectroscopy. Food Chem 90:323–327CrossRefGoogle Scholar
  31. 31.
    Saraswathy G, Pal S, Rose C, Sastry TP (2001) A novel bio-inorganic bone implant containing deglued bone, chitosan and gelatine. Bull Mater Sci 24:415–420CrossRefGoogle Scholar
  32. 32.
    Yavuz AG, Uygun A, Bhethanabotl VR (2009) Substituted polyaniline/chitosan composites: synthesis and characterization. Carbohyd Polym 75:448–453CrossRefGoogle Scholar
  33. 33.
    Chen Z, Mo X, He C, Wang H (2008) Intermolecular interactions in electrospun collagen–chitosan complex nanofibers. Carbohyd Polym 72:410–418CrossRefGoogle Scholar
  34. 34.
    Coates J (2006) Interpretation of infrared spectra: a practical approach, Encyclopedia of Analytical Chemistry. John Wiley & Sons Ltd, ChichesterGoogle Scholar
  35. 35.
    Farag RK, Mohamed RR (2013) Synthesis and characterization of carboxymethyl chitosan nanogels for swelling studies and antimicrobial activity. Molecules 18:190–203CrossRefGoogle Scholar
  36. 36.
    Vlachos N, Skopelitis Y, Psaroudaki M, Konstantinidou V, Chatzilazarou A, Tegou E (2006) Applications of Fourier transform-infrared spectroscopy to edible oils. Anal Chim Acta 573–574:459–465CrossRefGoogle Scholar
  37. 37.
    Martins JT, Cerqueira MA, Vicente AA (2012) Influence of α-tocopherol on physicochemical properties of chitosan-based films. Food Hydrocollid 27:220–227CrossRefGoogle Scholar
  38. 38.
    Capponi M, Gut IG, Hellrung B, Persy G, Wirz J (1999) Ketonization equilibria of phenol in aqueous solution. Can J Chem 77:605–613CrossRefGoogle Scholar
  39. 39.
    Naghibzadeh M, Amani A, Amini M, Esmaeilzadeh E, Mottaghi-Dastjerdi N, Faramarzi MA (2010) An insight into the interactions between α-tocopherol and chitosan in ultrasound-prepared nanoparticles. J Nanomat 2010:1–7. doi: 10.1155/2010/818717 CrossRefGoogle Scholar
  40. 40.
    Pâslaru E, Fras Zemljic L, Bračič M, Vesel A, Petrinić I, Vasile C (2013) Stability of a chitosan layer deposited onto a polyethylene surface. J Appl Polym Sci 130:2444–2457CrossRefGoogle Scholar
  41. 41.
    Stark HH, Boyes JH, Johnson L, Ashworth CR (1977) The use of paratenon, polyethylene film, or silastic sheeting to prevent restricting adhesions to tendons in the hand. J Bone Joint Surg Am 59:908–913Google Scholar
  42. 42.
    Lih E, Oh SH, Joung YK, Lee JH, Han DK (2015) Polymers for cell/tissue anti-adhesion. Prog Polym Sci 44:28–61CrossRefGoogle Scholar
  43. 43.
    Steen KH, Steen AE, Reeh PW (1995) A dominant role of acid pH in inflammatory excitation and sensitization of nociceptors in rat skin, in vitro. J Neurosci 15:3982–3989Google Scholar

Copyright information

© Iran Polymer and Petrochemical Institute 2016

Authors and Affiliations

  • Elena Stoleru
    • 1
  • Silvestru B. Munteanu
    • 2
  • Raluca P. Dumitriu
    • 1
  • Adina Coroaba
    • 1
  • Mioara Drobotă
    • 1
  • Lidija Fras Zemljic
    • 3
  • Gina M. Pricope
    • 4
  • Cornelia Vasile
    • 1
  1. 1.“Petru Poni” Institute of Macromolecular Chemistry, Romanian AcademyIasiRomania
  2. 2.Faculty of Physics“Al. I. Cuza” UniversityIasiRomania
  3. 3.Faculty of Chemical EngineeringUniversity of MariborMariborSlovenia
  4. 4.Veterinary and Food Safety LaboratoryFood Safety DepartmentIasiRomania

Personalised recommendations