Skip to main content
Log in

Synthesis and properties of a phosphate ester as curing agent in an epoxy resin system

  • Original Paper
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Phosphate ester compounds display good flame retardancy effect in epoxy resin systems. In this paper, several novel phosphate esters, used as curing agents for epoxy resins, were synthesized based on P2O5, phosphoric acid, and different types of alcohol. The structures of phosphate esters were characterized by 31P nuclear magnetic resonance (31P NMR). Then, a series of flame retardant epoxy composites were prepared by curing the epoxy resins (E-44) with the phosphate esters. The flame retardancy and thermal degradation behaviors of flame retardant epoxy composites were investigated by cone calorimeter test (CCT) and thermogravimetric analysis (TGA), respectively. The results of CCT indicated that phosphate esters can significantly decrease heat release rate, total heat release (THR), and smoke production rate. The sample cured by butyl phosphate ester from phosphorus pentoxide, phosphoric acid and butanol showed the best flame retardant performance among all samples. The TGA results showed that phosphate esters could enhance char residues of flame retardant epoxy composites when compared with those of a composite using T31 as a curing agent at high temperature. It may be concluded that good flame retardant properties of flame retardant epoxy composites are related to the formation of a protective phosphorus-rich char layer. These phosphate esters have a good future on flame retardant epoxy composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhu JH, Chen MJ, He QL, Shao L, Wei SY, Guo ZH (2013) An overview of the engineered graphene nanostructures and nanocomposites. RSC Adv 3:22790–22824

    Article  CAS  Google Scholar 

  2. Gu HB, Tadakamalla S, Zhang X, Huang YD, Jiang Y, Colorado HA, Luo ZP, Wei SY, Guo ZH (2013) Epoxy resin nanosuspensions and reinforced nanocomposites from polyaniline stabilized multi-walled carbon nanotubes. J Mater Chem 1:729–743

    Article  CAS  Google Scholar 

  3. Gu HB, Tadakamalla S, Huang YD, Colorado HA, Luo ZP, Neel H, Young DP, Wei SY, Guo ZH (2012) Polyaniline stabilized magnetite nanoparticles reinforced epoxy nanocomposites. ACS Appl Mater Int 4:5613–5624

    Article  CAS  Google Scholar 

  4. Zhang X, Alloul O, Zhu JH, He QL, Luo ZP, Colorado HA, Neel H, Young DP, Shen TD, Wei SY, Guo ZH (2013) Iron core carbon shell nanoparticles reinforced electrically conductive magnetic epoxy resin nanocomposites with reduced flammability. RSC Adv 3:9453–9464

    Article  CAS  Google Scholar 

  5. Zhang X, He QL, Gu HB, Wei SY, Guo ZH (2013) Polyaniline stabilized barium titanate nanoparticles reinforced epoxy nanocomposites with high dielectric permittivity and reduced flammability. J Mater Chem 1:2886–2899

    Article  CAS  Google Scholar 

  6. Zhu JH, Wei SY, Yadav A, Guo ZH (2010) Rheological behaviors and electrical conductivity of epoxy resin nanocomposites suspended with in situ stabilized carbon nanofibers. Polymer 51:2643–2651

    Article  CAS  Google Scholar 

  7. Hayaty M, Honarkar H, Beheshty MH (2013) Curing behavior of dicyandiamide/epoxy resin system using different accelerators. Iran Polym J 22:591–598

    Article  CAS  Google Scholar 

  8. Jiao CM, Dong J, Chen XL, Li SX (2013) Influence of T31 content on combustion and thermal degradation behaviors on flame-retardant epoxy composites. J Therm Anal Calorim 114:1201–1206

    Article  CAS  Google Scholar 

  9. Lu S, Ban J, Yu C, Deng W (2010) Properties of epoxy resins modified with liquid crystalline polyurethane. Iran Polym J 19:669–678

    CAS  Google Scholar 

  10. Seibold S, Schaefer A, Lohstroh W, Walter O, Doering M (2008) Phosphorus-containing terephthaldialdehyde adducts-structure determination and their application as flame retardants in epoxy resins. J Appl Polym Sci 108:264–271

    Article  CAS  Google Scholar 

  11. Wu Q, Bao JW, Zhang C, Liang R, Wang B (2011) The effect of thermal stability of carbon nanotubes on the flame retardancy of epoxy and bismaleimide/carbon fiber/buckypaper composites. J Therm Anal Calorim 103:237–242

    Article  CAS  Google Scholar 

  12. Everson K, Baljinder KK, Myler P (2013) Evaluating the influence of varied fire-retardant surface coatings on post-heat flexural properties of glass/epoxy composites. Fire Saf J 58:112–120

    Article  Google Scholar 

  13. Gu HB, Guo J, He QL, Tadakamalla S, Zhang X, Yan XR, Huang YD, Colorado HA, Wei SY, Guo ZH (2013) Flame retardant epoxy resin nanocomposites reinforced with polyaniline stabilized silica nanoparticles. Ind Eng Chem Res 52:7718–7728

    Article  CAS  Google Scholar 

  14. Zhang X, He QL, Gu HB, Colorado HA, Wei SY, Guo ZH (2013) Flame retardant electrical conductive nano-polymers based on bisphenol F epoxy resin reinforced with nano polyanilines. ACS Appl Mater Inter 5:898–910

    Article  CAS  Google Scholar 

  15. Toldy A, Toth N, Anna P, Keglevich Gy, Kiss K, Marosi Gy (2006) Flame retardancy of epoxy resin with phosphorus-containing reactive amine and clay minerals. Polym Adv Technol 17:778–781

    Article  CAS  Google Scholar 

  16. Liang B, Cao J, Hong XD, Wang CS (2013) Synthesis and properties of a novel phosphorous-containing flame-retardant hardener for epoxy resin. J Appl Polym Sci 128:2759–2765

    Article  CAS  Google Scholar 

  17. Wang CS, Berman JR, Walker LL, Mendoza A (1991) Meta-bromobiphenol epoxy resins: applications in electronic packaging and printed circuit board. J Appl Polym Sci 43:1315–1321

    Article  CAS  Google Scholar 

  18. Levchik SV, Well ED (2004) Thermal decomposition, combustion and flame-retardancy of epoxy resins––a review of the recent literature. Polym Int 12:1901–1929

    Article  Google Scholar 

  19. Feng JX, Su SP, Zhua J (2011) An intumescent flame retardant system using β-cyclodextrin as a carbon source in polylactic acid (PLA). Polym Adv Technol 22:1115–1122

    Article  CAS  Google Scholar 

  20. Ding JP, Tao ZQ, Zuo XB, Fan L, Yang SY (2009) Preparation and properties of halogen-free flame retardant epoxy resins with phosphorus-containing siloxanes. Polym Bull 62:829–841

    Article  CAS  Google Scholar 

  21. Hsiue GH, Wang WJ, Chang FC (1999) Synthesis, characterization, thermal and flame-retardant properties of silicon-based epoxy resins. J Appl Polym Sci 73:1231–1238

    Article  CAS  Google Scholar 

  22. Mercado LA, Galià M, Reina JA (2006) Silicon-containing flame retardant epoxy resins: synthesis, characterization and properties. Polym Degrad Stab 91:2588–2594

    Article  CAS  Google Scholar 

  23. Zhang XH, Wan HM, Min YQ, Qi GR (2005) Novel nitrogen-containing epoxy resin. I. Synthetic kinetics. J Appl Polym Sci 96:723–731

    Article  CAS  Google Scholar 

  24. He QL, Yuan TT, Yan XR, Ding DW, Wang Q, Luo ZP, Shen TD, Wei SY, Cao DP, Guo ZH (2014) Flame-retardant polypropylene/multiwalll carbon nanotube nanocomposites: effects of surface functionalization and surfactant molecular weight. Macromol Chem Phys 215:327–340

    Article  CAS  Google Scholar 

  25. He QL, Yuan TT, Wei SY, Guo ZH (2013) Catalytic and synergistic effects on thermal stability and combustion behavior of polypropylene: influence of maleic anhydride grafted polypropylene stabilized cobalt nanoparticles. J Mater Chem 1:13064–13075

    Article  CAS  Google Scholar 

  26. Li L, Qian Y, Jiao CM (2012) Influence of red phosphorus on the flame-retardant properties of ethylene vinyl acetate/layered double hydroxides composites. Iran Polym J 21:557–568

    Article  CAS  Google Scholar 

  27. Liu Y, Pearce EM, Weil ED (1999) Flame retardancy of dicyandiamide-crosslinked epoxy resins containing phenolphthalein structures and/or a phosphorus-containing additive. J Fire Sci 17:240–258

    Article  CAS  Google Scholar 

  28. Liu YL, Hsiue GH, Lee RH, Chiu YS (1997) Phosphorus-containing epoxy for flame retardant. III: using phosphorylated diamines as curing agents. J Appl Polym Sci 63:895–901

    Article  CAS  Google Scholar 

  29. Wang CS, Shieh JY (1999) Phosphorus-containing epoxy resin for an electronic application. J Appl Polym Sci 73:353–361

    Article  CAS  Google Scholar 

  30. Zhu JH, Wei SY, Ryu J, Sun LY, Luo ZP, Guo ZH (2010) Magnetic epoxy resin nanocomposites reinforced with core-shell structured Fe@FeO nanoparticles: fabrication and property analysis. ACS Appl Mater Inter 2:2100–2107

    Article  CAS  Google Scholar 

  31. Zhu JH, Wei SY, Ryu J, Budhathoki M, Liang G, Guo ZH (2010) In-situ stabilized carbon nanofibers (CNFs) reinforced epoxy nanocomposites. J Mater Chem 20:4937–4948

    Article  CAS  Google Scholar 

  32. Jiao CM, Zhuo JL, Chen XL, Li SX, Wang HJ (2013) Flame retardant epoxy resin based on bisphenol A epoxy resin modified by phosphoric acid. J Therm Anal Calorim 114:253–259

    Article  CAS  Google Scholar 

  33. Chen XL, Jiao CM, Li SX, Sun J (2011) Flame retardant epoxy resins from bisphenol-A epoxy cured with hyperbranched polyphosphate ester. J Polym Res 18:2229–2237

    Article  CAS  Google Scholar 

  34. Morgan AB, Matthew B (2007) Cone calorimeter analysis of UL-94 V rated plastics. Fire Mater 31:257–283

    Article  CAS  Google Scholar 

  35. Grazyna J, Agnieszka KJ, Przemysław R (2011) Thermal stability, flammability and fire hazard of butadiene-acrylonitrile rubber nanocomposites. J Therm Anal Calorim 103:1039–1046

    Article  Google Scholar 

  36. Zhong HF, Wei P, Jiang PK, Wang GL (2007) Thermal degradation behaviors and flame retardancy of PC/ABS with novel silicon-containing flame retardant. Fire Mater 31:411–423

    Article  CAS  Google Scholar 

  37. Wang XY, Li Y, Liao WW, Gu J, Li D (2008) A new intumescent flame-retardant: preparation, surface modification, and its application in polypropylene. Polym Adv Technol 19:1055–1061

    Article  CAS  Google Scholar 

  38. Filipczak R, Crowley S, Lyon RE (2005) Heat release rate measurements of thin samples in the OSU apparatus and the cone calorimeter. Fire Safety J 40:628–645

    Article  CAS  Google Scholar 

  39. Wang X, Hu Y, Song L, Xing WY, Lu HD, Lv P, Jie GX (2010) Flame retardancy and thermal degradation mechanism of epoxy resin composites based on a DOPO substituted organophosphorus oligomer. Polymer 51:2435–2445

    Article  CAS  Google Scholar 

  40. Clayton H (1980) Estimation of rate of heat release by means of oxygen consumption measurements. Fire Mater 4:61–65

    Article  Google Scholar 

  41. Wu XF, Wang Y, Xie LY, Yu JH, Liu F, Jiang PK (2013) Thermal and electrical properties of epoxy composites at high alumina loadings and various temperatures. Iran Polym J 22:61–73

    Article  CAS  Google Scholar 

  42. Cullis CF, Hirschler MM (1983) The significance of thermo analytical measurements in the assessment of polymer flammability. Polymer 24:834–840

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the National Natural Science Foundation of China (No. 51206084) and the Outstanding Young Scientist Research Award Fund from Shandong Province (BS2011CL018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xilei Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, C., Dong, J., Zhang, C. et al. Synthesis and properties of a phosphate ester as curing agent in an epoxy resin system. Iran Polym J 23, 591–598 (2014). https://doi.org/10.1007/s13726-014-0253-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-014-0253-8

Keywords

Navigation