Iranian Polymer Journal

, Volume 23, Issue 3, pp 227–236 | Cite as

Growth of muscle cells on plasma-treated and gold nanoparticles-grafted polytetrafluoroethylene

  • A. ŘezníčkováEmail author
  • Z. Makajová
  • N. Slepičková Kasálková
  • Z. Kolská
  • L. Bačáková
  • V. Švorčík
Original Paper


Polytetrafluoroethylene (PTFE) was modified by Ar plasma with different exposure times. The plasma-activated surface was immersed in biphenyldithiol and subsequently in colloidal solution of Au nanoparticles. The changes in the surface wettability contact angle were examined by goniometry. Atomic force microscopy was used to determine the surface roughness and morphology. Changes in the chemical structure of the modified PTFE were studied using X-ray photoelectron spectroscopy (XPS) and electrokinetic analysis. The interaction of plasma-treated and grafted samples with vascular smooth muscle cell derived from the rat aorta was also studied. Specifically, the number and morphology of the adhered and proliferated cells on the PTFE were studied under in vitro conditions. The plasma treatment and the subsequent biphenyldithiol and Au nanoparticles grafting led to changes in the polymer surface chemistry, morphology, roughness and wettability. The polymer grafting with biphenyl-4,4′-dithiol (BFD) and subsequently with Au nanoparticles led to a decrease in the surface polarity. XPS measurements proved the presence of S and Au on the PTFE surface. Grafting with BFD and Au nanoparticles led to the decrease in surface roughness. In comparison with the pristine polymer, the plasma treatment and Au nanoparticles grafting increased the adhesion and proliferation of vascular smooth muscle cell.


Polytetrafluoroethylene (PTFE) Modification Nanoparticles Biocompatibility Atomic force microscopy (AFM) 



This work was supported by the GACR under project 108/12/G108.

Conflict of interest

We declare that there is no conflict of interest.


  1. 1.
    Bačáková L, Filova E, Pařízek M, Ruml T, Švorčík V (2011) Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants. Biotechnol Adv 29:739–767CrossRefGoogle Scholar
  2. 2.
    Goddard JM, Hotchkiss JH (2007) Polymer surface modification for the attachment of bioactive compounds. Prog Polym Sci 32:698–725CrossRefGoogle Scholar
  3. 3.
    Švorčík V, Kotál V, Siegel J, Sajdl P, Macková A, Hnatowicz V (2007) Ablation and water etching of poly(ethylene) modified by argon plasma. Polym Degrad Stabil 92:1645–1649CrossRefGoogle Scholar
  4. 4.
    Švorčík V, Arenholz E, Hnatowicz V, Rybka V, Öchsner R, Ryssel H (1998) AFM surface investigation of polyethylene modified by ion bombardment. Nucl Instrum Methods B 142:349–354CrossRefGoogle Scholar
  5. 5.
    Švorčík V, Rybka V, Jankovskij O, Hnatowicz V (1996) Free volume-limited diffusion in ion-modified polymers. J Appl Polym Sci 61:1097–1100CrossRefGoogle Scholar
  6. 6.
    Švorčík V, Rybka V, Hnatowicz V, Smetana K Jr (1997) Structure and biocompatibility of ion beam modified polyethylene. J Mater Sci Mater Med 8:435–440CrossRefGoogle Scholar
  7. 7.
    Švorčík V, Kolářová K, Slepička P, Macková M, Novotná M, Hnatowicz V (2006) Modification of surface properties of high and low density polyethylene by Ar plasma discharge. Polym Degrad Stabil 91:1219–1225CrossRefGoogle Scholar
  8. 8.
    Wang C, Chen J-R, Li R (2008) Studies on surface modification of poly(tetrafluoroethylene) film by remote and direct Ar plasma. Appl Surf Sci 254:2882–2888CrossRefGoogle Scholar
  9. 9.
    Švorčík V, Řezníčková A, Sajdl P, Kolská Z, Makajová Z, Slepička P (2011) Au nano-particles grafted on plasma treated polymers. J Mater Sci 46:7917–7922CrossRefGoogle Scholar
  10. 10.
    Řezníčková A, Kolská Z, Hnatowicz V, Stopka P, Švorčík V (2011) Comparison of argon plasma-induced surface changes of thermoplastic polymers. Nucl Instrum Methods B 269:83–88CrossRefGoogle Scholar
  11. 11.
    Okubo M, Tahara M, Saeki N, Yamamoto T (2008) Surface modification of fluorocarbon polymer films for improved adhesion using atmospheric-pressure nonthermal plasma graft-polymerization. Thin Solid Film 516:6592–6597CrossRefGoogle Scholar
  12. 12.
    Jacobs T, Morent R, De Geyter N, Dubruel P, Leys C (2012) Plasma surface modification of biomedical polymers: influence on cell-material interaction. Plasma Chem Plasma Process 32:1039–1073CrossRefGoogle Scholar
  13. 13.
    Shi TN, Shao ML, Zhang HR, Yang Q, Shen XY (2011) Surface modification of porous poly(tetrafluoroethylene) film via cold plasma treatment. Appl Surf Sci 258:1474–1479CrossRefGoogle Scholar
  14. 14.
    Bax DV, McKenzie DR, Bilek MMM, Weiss AS (2011) Directed cell attachment by tropoelastin on masked plasma immersion ion implantation treated PTFE. Biomaterials 32:6710–6718CrossRefGoogle Scholar
  15. 15.
    Noh JH, Baik HK, Noh I, Park J-C, Lee I-S (2007) Surface modification of polytetrafluoroethylene using atmospheric pressure plasma jet for medical application. Surf Coat Technol 201:5097–5101CrossRefGoogle Scholar
  16. 16.
    Homberger M, Ulrich S (2010) On the application potential of gold nanoparticles in nanoelectronics and biomedicine. Phil Trans R Soc A 368:1405–1453CrossRefGoogle Scholar
  17. 17.
    Gubin SP, Yurkov GY, Korobov MS, Koksharov YA, Kozinkin AV, Pirog IV, Zubkov SV, Kitaev VV, Sarichev DA, Bouznik VM, Tsvetnikov AK (2005) Immobilization of metal-containing nanoparticles on the surface of polytetrafluoroethylene nanogranules. Acta Mater 53:1407–1413CrossRefGoogle Scholar
  18. 18.
    Shenoy D, Fu W, Li J, Crasto C, Jones G, DiMarzio C, Sridhar S, Amiji M (2006) Surface functionalization of gold nanoparticles using hetero-bifunctional poly(ethylene glycol) spacer for intracellular tracking and delivery. Int J Nanomedicine 1:51–57CrossRefGoogle Scholar
  19. 19.
    Kaune G, Ruderer MA, Metwalli E, Wang W, Couet S, Schlage K, Röhlsberger R, Roth SV, Müller-Buschbaum P (2009) In situ GISAXS study of gold film growth on conducting polymer films. ACS Appl Mater Interfaces 1:353–360CrossRefGoogle Scholar
  20. 20.
    Řezanka P, Záruba K, Král V (2008) A change in nucleotide selectivity pattern of porphyrin derivatives after immobilization on gold nanoparticles. Tetrahedron Lett 49:6448–6453CrossRefGoogle Scholar
  21. 21.
    Ročková-Hlaváčková K, Švorčík V, Bačáková L, Dvořánková B, Heitz J, Hnatowicz V (2004) Bio-compatibility of ion beam-modified and RGD-grafted polyethylene. Nucl Instrum Methods B 225:275–282CrossRefGoogle Scholar
  22. 22.
    Bačáková L, Lisá V, Pellicciari C, Mareš V, Bottone M-G, Kocourek F (1997) Sex related differences in the adhesion, migration, and growth of rat aortic smooth muscle cells in culture. In Vitro Cell Dev B 33:410–413CrossRefGoogle Scholar
  23. 23.
    Kasálková N, Makajová Z, Pařízek M, Slepička P, Kolářová K, Bačáková L, Hnatowicz V, Švorčík V (2010) Cell adhesion and proliferation on plasma-treated and poly(ethylene glycol)-grafted polyethylene. J Adhes Sci Technol 24:743–754CrossRefGoogle Scholar
  24. 24.
    Řezníčková A, Kolská Z, Hnatowicz V, Švorčík V (2011) Nano-structuring of PTFE surface by plasma treatment, etching, and sputtering with gold. J Nanopart Res 13:2929–2938CrossRefGoogle Scholar
  25. 25.
    Liu CZ, Wu JQ, Ren LQ, Tong J, Li JQ, Cui N, Brown NMD, Meenan BJ (2004) Comparative study on the effect of RF and DBD plasma treatment on PTFE surface modification. Mater Chem Phys 85:340–346CrossRefGoogle Scholar
  26. 26.
    Gerenser LJ (1993) XPS Studies of in situ plasma-modified polymer surfaces. J Adhes Sci Technol 7:1019–1040CrossRefGoogle Scholar
  27. 27.
    Švorčík V, Kolská Z, Kvítek O, Siegel J, Řezníčková A, Řezanka P, Záruba K (2011) “Soft and rigid” dithiols and Au nanoparticles grafting on plasma treated polyethyleneterephthalate. Nanoscale Res Lett 6:607–613CrossRefGoogle Scholar
  28. 28.
    Wang S, Li J, Suo J, Luo T (2010) Surface modification of porous poly(tetrafluoraethylene) film by a simple chemical oxidation treatment. Appl Surf Sci 256:2293–2298CrossRefGoogle Scholar
  29. 29.
    Bačáková L, Mareš V, Bottone MG, Pellicciari C, Lisá V, Švorčík V (2000) Fluorine-ion-implanted polystyrene improves growth and viability of vascular smooth muscle cells in culture. J Biomed Mater Res 49:369–379CrossRefGoogle Scholar
  30. 30.
    Bordenave L, Fernandez P, Rémy-Zolghadri M, Villars S, Daculsi R, Midy D (2005) In vitro endothelialized ePTFE prostheses: clinical update 20 years after the first realization. Clin Hemorheol Microcirc 33:227–234Google Scholar
  31. 31.
    Chlupáč J, Filová E, Bačáková L (2009) Blood vessel replacement: 50 years of development and tissue engineering paradigms in vascular surgery. Physiol Res 58:S119–S139Google Scholar
  32. 32.
    Heitz J, Švorčík V, Bačáková L, Ročková K, Ratajová E, Gumpenberger T, Bäuerle D, Dvořánková B, Kahr H, Graz I, Romanin C (2003) Cell adhesion on polytetrafluoroethylene modified by UV-irradiation in an ammonia atmosphere. J Biomed Mater Res A 67:130–137CrossRefGoogle Scholar
  33. 33.
    Iwasaki K, Kojima K, Kodama S, Paz AC, Chambers M, Umezu M, Vacanti CA (2008) Bioengineered three-layered robust and elastic artery using hemodynamically-equivalent pulsatile bioreactor. Circulation 118:S52–S57CrossRefGoogle Scholar
  34. 34.
    Kalita H, Karak N (2012) Bio-based elastomeric hyperbranched polyurethanes for shape memory application. Iran Polym J 21:263–271CrossRefGoogle Scholar
  35. 35.
    Zheng L, Lu HQ, Fan HS, Zhang XD (2013) Reinforcement and chemical cross-linking in collagen-based scaffolds in cartilage tissue engineering: a comparative study. Iran Polym J 22:833–842CrossRefGoogle Scholar
  36. 36.
    Ige PP, Rajput P, Pardeshi C, Kawade R, Swami B, Mahajan H, Nerkar P, Belgamwar V, Surana S, Gattani S (2013) Development of pellets of nifedipine using HPMC K15 M and κ-carrageenan as mucoadhesive sustained delivery system and in vitro evaluation. Iran Polym J 22:911–921CrossRefGoogle Scholar

Copyright information

© Iran Polymer and Petrochemical Institute 2014

Authors and Affiliations

  • A. Řezníčková
    • 1
    Email author
  • Z. Makajová
    • 1
  • N. Slepičková Kasálková
    • 1
  • Z. Kolská
    • 2
  • L. Bačáková
    • 3
  • V. Švorčík
    • 1
  1. 1.Department of Solid State EngineeringInstitute of Chemical Technology, PraguePrague 6Czech Republic
  2. 2.Faculty of ScienceJ.E. Purkyně UniversityUsti nad LabemCzech Republic
  3. 3.Institute of PhysiologyAcademy of Sciences of the Czech RepublicPragueCzech Republic

Personalised recommendations