Iranian Polymer Journal

, Volume 22, Issue 3, pp 199–208 | Cite as

Electrolyte type and concentration effects on poly(3-(2- aminoethyl thiophene) electro-coated on glassy carbon electrode via impedimetric study

  • Murat Ates
  • Tolga Karazehir
  • Fatih Arican
  • Nuri Eren
Original Paper

Abstract

In this study, 3-(2-Aminoethyl thiophene) (2AET) monomer was electropolymerized on glassy carbon electrode (GCE) using various electrolytes (lithium perchlorate (LiClO4), sodium perchlorate (NaClO4), tetrabutyl ammonium tetra fluoroborate (TBABF4) and tetraethyl ammonium tetra fluoroborate (TEABF4) in acetonitrile (CH3CN) as solvent. Poly(3-(2-aminoethyl thiophene) (P(2AET))/GCE was characterized by cyclic voltammetry (CV), Fourier transform infrared reflectance spectrophotometry (FTIR-ATR), scanning electron microscopy, energy dispersive X-ray analysis (EDX), and electrochemical impedance spectroscopy (EIS) techniques. The electrochemical impedance spectroscopic results were given by Nyquist, Bode-magnitude, Bode-phase, capacitance and admittance plots. The highest low frequency capacitance (CLF) value obtained was 0.65 mF cm−2 in 0.1 M LiClO4/CH3CN for the initial monomer concentration of 1.5 mM. The highest double layer capacitance (Cdl = ~0.63 mF cm−2) was obtained in 0.1 M LiClO4/ACN for [2AET]0 = 0.5, 1.0 and 1.5 mM. The maximum phase angles (θ = 76.1o at 26.57 Hz) and conductivity (Y″ = 3.5 mS) were obtained in TEABF4/ACN for [2AET]0 = 0.5 and 1.0 mM, respectively. An equivalent circuit model of R(Q(R(Q(R(CR))))) was simulated for different electrolytes (LiClO4, NaClO4, TBABF4 and TEABF4)/P(2AET)/GCE system. A good fitting was obtained for the calculated experimental and theoretical EIS measurement results. The electroactivity of P(2AET)/GCE opens the possibility of using modified coated electrodes for electrochemical micro-capacitor electrodes and biosensor applications.

Keywords

3-(2-Aminoethyl thiophene) Electrolyte Scanning electron microscopy Concentration Circuit model 

References

  1. 1.
    Heth CL, Tallman DE, Rasmussen SC (2010) Electrochemical study of 3-(N-alkylamino)thiophenes: experimental and theoretical insights into a unique mechanism of oxidative polymerization. J Phys Chem B 114:5275–5282CrossRefGoogle Scholar
  2. 2.
    Beaujuge PM, Amb CM, Reynolds JR (2010) Spectral engineering in π-conjugated polymers with intramolecular donor-acceptor interactions. Acc Chem Res 43:1396–1407CrossRefGoogle Scholar
  3. 3.
    Roncali J (1992) Conjugated poly(thiophenes): synthesis, functionalization, and applications. Chem Rev 92:711–738CrossRefGoogle Scholar
  4. 4.
    McCullough RD (1998) The chemistry of conducting polythiophenes. Adv Mater 10:93–116CrossRefGoogle Scholar
  5. 5.
    Koyuncu FB, Koyuncu S, Ozdemir E (2011) A new multi-electrochromic 2,7-linked polycarbazole derivative: effect of the nitro subunit. Org Electron 12:1701–1710CrossRefGoogle Scholar
  6. 6.
    Zhang K, Tieke B, Forgie JC, Skabara PJ (2009) Electrochemical polymerisation of N-Arylated and N-Alkylated EDOT-substituted pyrrolo[3,4-c] pyrrole-1,4-dione (DPP) derivatives:influence of substitution pattern on optical and electronic properties. Macromol Rapid Commun 30:1834–1840CrossRefGoogle Scholar
  7. 7.
    Irvin JA, Irvin DJ, Stenger-Smith JD (2007) Electroactive polymers for batteries and supercapacitors. In: Handbook of conjugated polymers: processing and applications, Skotheim TA, Reynolds JR (Eds), 3rd edn, CRC Press, Boca RatonGoogle Scholar
  8. 8.
    Roncali J (1999) Electrogenerated functional conjugated polymers as advanced electrode materials. J Mater Chem 9:1875–1893CrossRefGoogle Scholar
  9. 9.
    Naudin E, Ho HA, Branchaud S, Breau L, Bélanger D (2002) Electrochemical polymerization and characterization of poly(3-(4-fluorophenyl)thiophene) in pure ionic liquids. J Phys Chem B 106:10585–10593CrossRefGoogle Scholar
  10. 10.
    Beaujuge PM, Ellinger S, Reynolds JR (2008) The donor-acceptor approach allows a black to transmissive switching polymeric electrochrome. Nat Mater 7:795–799CrossRefGoogle Scholar
  11. 11.
    Chang C-H, Wang K-L, Jiang J-C, Liaw D-J, Lee K-R, Lai J-Y, Lai K-H (2010) Novel rapid switching and bleaching electrochromic polyimides containing triarylamine with 2-phenyl-2-isopropyl groups. Polymer 51:4493–4502CrossRefGoogle Scholar
  12. 12.
    Goto H, Kawabata K (2011) Light driven asymmetric polymerization: an approach for tele-control reaction. Polym Chem 2:1098–1106CrossRefGoogle Scholar
  13. 13.
    Goto H (2012) Electrochemical polymerization in crystal—preparation of polybithiophene with crystal order. J Polym Sci Part A Polym Chem 50:622–628CrossRefGoogle Scholar
  14. 14.
    Kiani GR, Arsalani N, Entezami AA (2001) The influence of the catalytic amount of 1-(2-pyrrolyl)-2-(2-thienyl)ethylene and 2-(2-thienyl)pyrrole on electropolymerization of pyrrole and N-methylpyrrole. Iran Polym J 10:135–142Google Scholar
  15. 15.
    Tam PD, Van Hieu N (2011) Conducting polymer film-based immunosensor using carbon nanotube/antibodies doped polypyrrole. Appl Surf Sci 257:9817–9824CrossRefGoogle Scholar
  16. 16.
    Ates M, Yilmaz K, Shahryari A, Omanovic S, Sarac AS (2008) A study of the electrochemical behavior of poly(N-vinylcarbazole) formed on carbon fiber microelectrodes and its response to dopamine. IEEE Sensors J 8:1628–1639CrossRefGoogle Scholar
  17. 17.
    Ates M, Sarac AS, Turhan CM, Ayaz NE (2009) Polycarbazole modified carbon fiber microelectrode: surface characterization and dopamine sensor. Fiber Polym 10:46–52CrossRefGoogle Scholar
  18. 18.
    Ates M, Castillo J, Sarac AS, Schuhmann W (2008) Carbon fiber microelectrodes electrocoated with polycarbazole and poly(carbazole-co-p-tolylsulfonyl pyrrole) P(Cz-co-p Tsp) films for the detection of dopamine in presence of ascorbic acid. Microchim Acta 160:247–251CrossRefGoogle Scholar
  19. 19.
    Gómez H, Ram MK, Alvi F, Villalba P, Stefanakos E, Kumar A (2011) Graphene-conducting polymer nanocomposite as novel electrode for supercapacitors. J Power Sources 196:4102–4108CrossRefGoogle Scholar
  20. 20.
    Zhou Y, Qin Z-Y, Li L, Zhang Y, Wei Y-L, Wang L-F, Zhu M-F (2010) Polyaniline/multi-walled carbon nanotube composites with core-shell structures as supercapacitor electrode materials. Electrochim Acta 55:3904–3908CrossRefGoogle Scholar
  21. 21.
    Wang J, Xu Y, Chen X, Du X (2007) Electrochemical supercapacitor electrode material based on poly(3,4-ethylenedioxythiophene) polypyrrole composite. J Power Sources 163:1120–1125CrossRefGoogle Scholar
  22. 22.
    Selvakumar M, Pitchumani S (2010) Hybrid supercapacitor based on poly(aniline-co-m-anilicacid) and activated carbon in non-aqueous electrolyte. Korean J Chem Eng 27:977–982CrossRefGoogle Scholar
  23. 23.
    Zou J, Yip H-L, Hau SK, Jen AK-Y (2010) Metal grid/conducting polymer hybrid transparent electrode for inverted polymer solar cells. Appl Phys Let 96:203301–203303CrossRefGoogle Scholar
  24. 24.
    Ma C, Xu Y, Zhang C, Xu Y, Xiang W, Ouyang M (2009) Electrochemical polymerization of a beta–beta linkages polythiophene derivative based on 2,5-diphenyl-thiophene. J Electroanal Chem 634:31–34CrossRefGoogle Scholar
  25. 25.
    Borrelli DC, Barr MC, Bulović V, Gleason KK (2012) Bilayer heterojunction polymer solar cells using unsubstituted polythiophene via oxidative chemical vapor deposition. Sol Energ Mat Sol C 99:190–196CrossRefGoogle Scholar
  26. 26.
    Sivaraman P, Mishra SP, Bhattacharrya AR, Thakur A, Shashidhara K, Samui AB (2012) Effect of regioregularity on specific capacitance of poly(3-hexylthiophene). Electrochim Acta 69:134–138CrossRefGoogle Scholar
  27. 27.
    Anglin TC, Speros JC, Massari AM (2011) Interfacial ring orientation in polythiophene field-effect transistors on functionalized dielectrics. J Phys Chem C 115:16027–16036CrossRefGoogle Scholar
  28. 28.
    Jonas F, Schrader L (1991) Conductive modifications of polymers with polypyrroles and polythiophenes. Synth Met 41:831–836CrossRefGoogle Scholar
  29. 29.
    Kiani GR, Sheikhloie H, Rostami A (2011) Highly enhanced electrical conductivity and thermal stability of polythiophene/single-walled carbon nanotubes nanocomposite. Iran Polym J 20:623–632Google Scholar
  30. 30.
    Bushueva AY, Shklyaeva EV, Abashev GG (2009) New pyrimidines incorporating thiophene and pyrrole moieties: synthesis and electrochemical polymerization. Mendeleev Commun 19:329–331CrossRefGoogle Scholar
  31. 31.
    Groenendaal BL, Jonas F, Freitag D, Pielartzik H, Reynolds JR (2000) Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present and future. Adv Mater 12:481–494CrossRefGoogle Scholar
  32. 32.
    Roncali J (1997) Synthetic principles for band gap control in linear pi-conjugated systems. Chem Rev 97:173–205CrossRefGoogle Scholar
  33. 33.
    Granstrom M (1997) Polym novel polymer light-emitting diode designs using poly(thiophenes). Polym Adv Technol 8:424–430CrossRefGoogle Scholar
  34. 34.
    Higgins TB, Mirkin CA (1998) Model coordination complexes for designing poly(terthiophene)/Rh(I) hybrid materials with electrochemically tunable reactivities. Chem Mater 10:1589–1595CrossRefGoogle Scholar
  35. 35.
    Jadamiec M, Lapkowski M, Matlengiewicz M, Brembilla A, Henry B, Rodehüser L (2007) Electrochemical and spectroelectrochemical evidence of dimerization and oligomerization during the polymerization of terthiophenes. Electrochim Acta 52:6146–6154CrossRefGoogle Scholar
  36. 36.
    Chan HSO, Ng SC (1998) Synthesis, characterization and applications of thiophene-based functional polymers. Prog Polym Sci 23:1167–1231CrossRefGoogle Scholar
  37. 37.
    Barbarella G, Melucci M, Sotgiu G (2005) The versatile thiophene: an overview of recent research on thiophene-based materials. Adv Mater 17:1581–1593CrossRefGoogle Scholar
  38. 38.
    Jen K-Y, Miller GG, Elsenbaumer RL (1986) Highly conducting, soluble, and environmentally-stable poly(3-alkylthiophenes). J Chem Soc Chem Commun 17:1346–1347CrossRefGoogle Scholar
  39. 39.
    Armelin E, Bertran O, Estrany F, Salvatella R, Alemán C (2009) Characterization and properties of a polythiophene with a malonic acid dimethyl ester side group. Eur Polym J 45:2211–2221CrossRefGoogle Scholar
  40. 40.
    Scully JR, Silverman DC, Kendig MV (1993) Electrochemical impedance: analysis and interpretation. ASTM Int, PhiladelphiaCrossRefGoogle Scholar
  41. 41.
    Darowicki K, Kawula J (2004) Impedance characterization of the process of polyaniline first redox transformation after aniline electropolymerization. Electrochim Acta 49:4829–4839CrossRefGoogle Scholar
  42. 42.
    Baldissera AF, Freitas DB, Ferreira CA (2010) Electrochemical impedance spectroscopy investigation of chlorinated rubber-based coatings containing polyaniline as anticorrosion agent. Mater Corros 61:790–801CrossRefGoogle Scholar
  43. 43.
    Wang X, Bernard MC, Deslouis C, Joiret S, Rousseau P (2010) A new transfer function in electrochemistry: dynamic coupling between Raman spectroscopy and electrochemical impedance spectroscopy. Electrochim Acta 55:6299–6307CrossRefGoogle Scholar
  44. 44.
    Jannakoudakis PD, Pagalos N (1994) Electrochemical characteristics of anodically prepared conducting polyaniline films on carbon fiber supports. Synth Met 68:17–31CrossRefGoogle Scholar
  45. 45.
    Ferloni P, Mastragostino M, Meneghello L (1996) Impedance analysis of electronically conducting polymers. Electrochim Acta 41:27–33CrossRefGoogle Scholar
  46. 46.
    Simoes FR, Pocrifka LA, Marchesi LFQP, Pereira EC (2011) Investigation of electrochemical degradation process in polyaniline/polystyrene sulfonated self-assembly films by impedance spectroscopy. J Phys Chem B 115:11092–11097CrossRefGoogle Scholar
  47. 47.
    Agrisuelas J, Gabrielli C, García-Jareño JJ, Giménez-Romero D, Perrot H, Vicente FJ (2007) Spectroelectrochemical identification of the active sites for protons and anions insertions into poly(azure a) thin polymer films. J Phys Chem C 111:14230–14237CrossRefGoogle Scholar
  48. 48.
    Amemiya T, Hashimoto K, Fujishima A (1993) Faradaic charge-transfer with double-layer charging and/or adsorption related charging at polymer-modified electrodes as observed by color impedance spectroscopy. J Phys Chem 97:9736–9740CrossRefGoogle Scholar
  49. 49.
    Agrisuelas J, García- Jareño JJ, Giménez-Romero D, Vicente F (2010) An approach to the electrochemical activity of poly-(phenothiazines) by complementary electrochemical impedance spectroscopy and Vis-NIR spectroscopy. Electrochim Acta 55:6128–6135CrossRefGoogle Scholar
  50. 50.
    Manickam A, Chevalier A, McDermott M, Ellington AD, Hassibi A (2010) A CMOS electrochemical impedance spectroscopy (EIS) biosensor array. IEEE Trans Biomed Circuits Syst 4:379–390CrossRefGoogle Scholar
  51. 51.
    Edge S, Charlton A, Varma KS, Hansen TK, Underhill AE, Kathirgamanathan P, Berger J, Simonson O (1993) The preparation and properties of maleimide derivatives of 3-(2-aminoethyl)thiophene. Synth Met 53:315–324CrossRefGoogle Scholar
  52. 52.
    Era M, Yoneda S, Sano T, Noto M (2003) Preparation of amphiphilic poly(thiophene)s and their application for the construction of organic-inorganic superlattices. Thin Solid Films 438:322–325CrossRefGoogle Scholar
  53. 53.
    Murray RW, Ewing AG, Durst RA (1987) Chemically modified electrodes: molecular design for electrocatalysis. Anal Chem 59:379–390CrossRefGoogle Scholar
  54. 54.
    Anson FC, Ni CL, Saveant JM (1985) Eelectrocatalysis at redox polymer electrodes with separation of the catalytic and charge propogation roles. Reduction of O2 to H2O2 as catalyzed by cobalt (II) tetrakis (4-N-methylpyridyl)porphyrin. J Am Chem Soc 107:3442–3450CrossRefGoogle Scholar
  55. 55.
    Skotheim TA, Reynolds J (eds) (2007) Hanbook of conducting polymers, vols 1 and 2, 3rd edn. CRC Press, Boca RatonGoogle Scholar
  56. 56.
    Ding KQ, Wang Q, Jia Z, Tong R, Wang X, Shao H (2003) Impedance description of the effect of the polar potential on a Schiff base self-assembled monolayer. J Chin Chem Soc 50:387–394Google Scholar
  57. 57.
    Saraç AS, Gilsing H-D, Gencturk A, Schulz B (2007) Electrochemically polymerized 2,2-dimethyl-3,4-propylenedioxythiophene on carbon fiber for microsupercapacitor. Prog Org Coat 60:281–286CrossRefGoogle Scholar
  58. 58.
    Sezer E, Ustamehmetoğlu B, Saraç AS (1999) Chemical and electrochemical polymerization of pyrrole in the presence of N-substituted carbazoles. Synth Met 107:7–17CrossRefGoogle Scholar
  59. 59.
    Bates JB, Wang JC, Anderson RL (1984) In: Proceedings of the ECS Fall meeting, extented abstracts, New Orleans, 84:233–237Google Scholar
  60. 60.
    Le Mehaute A, Crepy G (1993) Introduction to transfer and motion in fractal media: the geometry of kinetics. Solid State Ionics 9–10:17–30Google Scholar
  61. 61.
    Tanguy J, Baudoin JL, Chao F, Costa M (1992) Study of the redox mechanism of poly-3-methylthiophene by impedance spectroscopy. Electrochim Acta 37:1417–1428CrossRefGoogle Scholar
  62. 62.
    Refaey SAM (2004) Electrochemical impedance studies on the electrochemical properties of poly(3-methylthiophene) in aqueous solutions. Synth Met 140:87–94CrossRefGoogle Scholar

Copyright information

© Iran Polymer and Petrochemical Institute 2012

Authors and Affiliations

  • Murat Ates
    • 1
  • Tolga Karazehir
    • 1
    • 2
  • Fatih Arican
    • 1
  • Nuri Eren
    • 1
  1. 1.Department of Chemistry, Faculty of Arts and SciencesNamik Kemal UniversityTekirdagTurkey
  2. 2.Department of Chemistry, Faculty of Arts and SciencesIstanbul Technical UniversityIstanbulTurkey

Personalised recommendations