Iranian Polymer Journal

, Volume 22, Issue 3, pp 155–163 | Cite as

Effect of MCM-41 nanoparticles on the kinetics of free radical and RAFT polymerization of styrene

  • Mohammadreza Sarsabili
  • Mehdi ParviniEmail author
  • Mehdi Salami-Kalajahi
  • Abbas Asfadeh
Original Paper


To examine the effect of mobil composition of matter 41 (MCM-41) nanoparticles on the kinetics of free radical and 2-(dodecylthiocarbonothioylthio)-2-methylpropionic acid (DDMAT)-mediated reversible addition fragmentation chain transfer (RAFT) polymerization, the polymerization reaction using various amounts of as-synthesized MCM-41 were performed. To study the reaction kinetics, conversion, molecular weight and polydispersity index (PDI) were obtained during the polymerization. Also, differential scanning calorimetry (DSC) was used to determine the glass transition temperature (T g) values of samples. According to the results, in free radical polymerization, conversion was increased by adding nanoparticles but the reverse trend was observed in RAFT polymerization. The same results were obtained for molecular weight values. In free radical polymerization, increasing the MCM-41 content led to higher PDI value, while in RAFT polymerization it did not appreciably affect the PDI value. In RAFT polymerization, no induction time was observed which indicates that DDMAT is an appropriate RAFT agent for styrene polymerization. Also in free radical polymerization, the addition of MCM-41 particles reduced T g values in comparison to neat PS. On the other hand, there was an increase in T g value up to 5 wt% of MCM-41 loading and a drastic reduction was observed in 7 wt% MCM-41 loading in the RAFT polymerization. Finally, the T g values of nanocomposites produced by RAFT method were higher than those in the nanocomposites synthesized using the free radical method.


MCM-41 Nanocomposite Kinetics Reversible addition fragmentation chain transfer (RAFT) polymerization Molecular weight distribution (MWD) Differential scanning calorimetry (DSC) 


  1. 1.
    Roghani-Mamaqani H, Haddadi-Asl V, Najafi M, Salami-Kalajahi M (2010) Synthesis and characterization of clay dispersed polystyrene nanocomposite via atom transfer radical polymerization. Polym Compos 31:1829–1837CrossRefGoogle Scholar
  2. 2.
    Motahari S, Dornajafi L, Fotovat-Ahmadi I (2012) Migration of organic compounds from PET/clay nanocomposites: influences of clay type, content and dispersion state. Iran Polym J 21:669–681CrossRefGoogle Scholar
  3. 3.
    Hajibaba A, Naderi G, Ghoreishy M, Bakhshandeh G, Razavi Nouri M (2012) Effect of single-walled carbon nanotubes on morphology and mechanical properties of NBR/PVC blends. Iran Polym J 21:505–511CrossRefGoogle Scholar
  4. 4.
    Rahimi-Razin S, Haddadi-Asl V, Salami-Kalajahi M, Behboodi-Sadabad F, Roghani-Mamaqani H (2012) Matrix-grafted multiwalled carbon nanotubes/poly(methyl methacrylate) nanocomposites synthesized by in situ RAFT polymerization: a kinetic study. Int J Chem Kinet 44:555–569CrossRefGoogle Scholar
  5. 5.
    Salami-Kalajahi M, Haddadi-Asl V, Rahimi-Razin S, Behboodi-Sadabad F, Najafi M, Roghani-Mamaqani H (2012) A study on the properties of PMMA/silica nanocomposites prepared via RAFT polymerization. J Polym Res 19: Article No. 9793Google Scholar
  6. 6.
    Ispas C, SokolovI Andreescu S (2009) Enzyme-functionalized mesoporous silica for bioanalytical applications. Anal Bioanal Chem 393:543–554CrossRefGoogle Scholar
  7. 7.
    Ma X-H, Xu Z-L, Wu F, Xu H-T (2012) PFSA-TiO2(or Al2O3)-PVA/PVA/PAN difunctional hollow fiber composite membranes prepared by dip-coating method. Iran Polym J 21:31–41CrossRefGoogle Scholar
  8. 8.
    Khezri K, Haddadi-Asl V, Roghani-Mamaqani H, Salami-Kalajahi M (2012) Nanoclay-encapsulated polystyrene microspheres by reverse atom transfer radical polymerization. Polym Compos 33:990–998CrossRefGoogle Scholar
  9. 9.
    Khezri K, Haddadi-Asl V, Roghani-Mamaqani H, Salami-Kalajahi M (2012) Synthesis of well-defined clay encapsulated poly (styrene-co-butyl acrylate) nanocomposite latexes via reverse atom transfer radical polymerization in miniemulsion. J Polym Eng 32:111–119Google Scholar
  10. 10.
    Jaymand M (2011) Surface modification of montmorillonite with novel modifier and preparation of polystyrene/montmorillonite nanocomposite by in situ radical polymerization. J Polym Res 18:957–963CrossRefGoogle Scholar
  11. 11.
    Rahimi-Razin S, Haddadi-Asl V, Salami-Kalajahi M, Behboodi-Sadabad F, Roghani-Mamaqani H (2012) Properties of matrix-grafted multi-walled carbon nanotube/poly(methyl methacrylate) nanocomposites synthesized by in situ reversible addition-fragmentation chain transfer polymerization. Int J Chem Kinet 44:555–569CrossRefGoogle Scholar
  12. 12.
    Duan J, Shao S, Li Y, Wang L, Jiang P, Liu B (2012) Polylactide/graphite nanosheets/MWCNTs nanocomposites with enhanced mechanical, thermal and electrical properties. Iran Polym J 21:109–120CrossRefGoogle Scholar
  13. 13.
    Salami-Kalajahi M, Haddadi-Asl V, Behboodi-Sadabad F, Rahimi-Razin S, Roghani-Mamaqani H (2012) Properties of PMMA/carbon nanotubes nanocomposites prepared by “grafting through” method. Polym Compos 33:215–224CrossRefGoogle Scholar
  14. 14.
    Jafarkhani M, Fazlali A, Moztarzadeh F, Mozafari M (2012) Mechanical and structural properties of polylactide/chitosan scaffolds reinforced with nano-calcium phosphate. Iran Polym J 21:713–720CrossRefGoogle Scholar
  15. 15.
    Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359:710–712CrossRefGoogle Scholar
  16. 16.
    Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL (1992) A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc 114:10834–10843CrossRefGoogle Scholar
  17. 17.
    Choi JS, Kim DJ, Chang SH, Ahn WS (2003) Catalytic applications of MCM-41 with different pore sizes in selected liquid phase reactions. Appl Catal A-Gen 254:225–237CrossRefGoogle Scholar
  18. 18.
    Selvaraj M, Pandurangan A, SeshadriK S, Sinaha PK, LalK B (2003) Synthesis, characterization and catalytic application of MCM-41 mesoporous molecular sieves containing Zn and Al. Appl Catal A-Gen 242:347–364CrossRefGoogle Scholar
  19. 19.
    Grün M, Lauer I, Unger KK (1997) The synthesis of micrometer- and submicrometer-size spheres of ordered mesoporous oxide MCM-41. Adv Mater 9:254–257CrossRefGoogle Scholar
  20. 20.
    Wight AP, Davis ME (2002) Design and preparation of organic-inorganic hybrid catalysts. Chem Rev 102:3589–3614CrossRefGoogle Scholar
  21. 21.
    Jiamwijitkul S, Jongsomjit B, Praserthdam P (2007) Effect of Boron-modified MCM-41-supported dMMAO/zirconocene catalyst on copolymerization of ethylene/1-octene for LLDPE synthesis. Iran Polym J 16:549–559Google Scholar
  22. 22.
    Nejabat GR, Nekoomanesh M, Arabi H, Emami M, Aghaei-Nieat M (2010) Preparation of polyethylene nano-fibres using rod-like MCM-41/TiCl4/MgCl2/THF bi-supported Ziegler-Natta catalytic system. Iran Polym J 19:79–87Google Scholar
  23. 23.
    Hui S, Chattopadhyay S, Chaki TK (2010) Thermal and thermo-oxidative degradation study of a model LDPE/EVA based TPE system: effect of nano silica and electron beam irradiation. Polym Compos 31:1387–1397Google Scholar
  24. 24.
    Roghani-Mamaqani H, Haddadi-Asl V, Salami-Kalajahi M (2012) In situ controlled radical polymerization: a review on synthesis of well-defined nanocomposites. Polym Rev 52:142–188CrossRefGoogle Scholar
  25. 25.
    Salami-Kalajahi M, Haddadi-Asl V, Behboodi-Sadabad F, Rahimi-Razin S, Roghani-Mamaqani H (2012) Effect of silica nanoparticle loading and surface modification on the kinetics of RAFT polymerization. J Polym Eng 32:13–22CrossRefGoogle Scholar
  26. 26.
    Salami-Kalajahi M, Haddadi-Asl V, Ganjeh-Anzabi P, Najafi M (2011) Dithioester-mediated RAFT polymerization: a kinetic study by mathematical modeling. Iran Polym J 20:459–478Google Scholar
  27. 27.
    Salami-Kalajahi M, Haddadi-Asl V, Behboodi-Sadabad F, Rahimi-Razin S, Roghani-Mamaqani H, Hemmati M (2012) Effect of carbon nanotubes on the kinetics of in situ polymerization of methyl methacrylate. Nano 07:Article No. 1250003Google Scholar
  28. 28.
    Grun M, Unger KK, Matsumoto A, Tsutsumi K (1999) Novel pathways for the preparation of mesoporous MCM-41 materials—control of porosity and morphology. Micropor Mesopor Mater 27:207–216CrossRefGoogle Scholar
  29. 29.
    Lai JT, Filla D, Shea R (2002) Functional polymers from novel carboxyl-terminated trithiocarbonates as highly efficient RAFT agents. Macromolecules 35:6754–6756CrossRefGoogle Scholar
  30. 30.
    Salami-Kalajahi M, Haddadi-Asl V, Rahimi-Razin S, Behboodi-Sadabad F, Roghani-Mamaqani H, Hemmati M (2011) Investigating the effect of pristine and modified silica nanoparticles on thekinetics of methyl methacrylate polymerization. Chem Eng J 174:368–375CrossRefGoogle Scholar
  31. 31.
    Rahimi-Razin S, Salami-Kalajahi M, Haddadi-Asl V, Roghani-Mamaqani H (2012) Effect of different modified nanoclays on the kinetics of preparation and properties of polymer-based nanocomposites. J Polym Res 19: Article No. 9954Google Scholar
  32. 32.
    Khezri K, Haddadi-Asl V, Roghani-Mamaqani H, Salami-Kalajahi M (2011) Synthesis and characterization of exfoliated poly(styrene-co-methyl methacrylate) nanocomposite via miniemulsion atom transfer radical polymerization: an activators generated by electron transfer approach. Polym Compos 32:1979–1987CrossRefGoogle Scholar
  33. 33.
    Perrier S, Barner-Kowollik C, Quinn JF, Vana P, Davis TP (2002) Origin of inhibition effects in the reversible addition fragmentation chain transfer (RAFT) polymerization of methyl acrylate. Macromolecules 35:8300–8306CrossRefGoogle Scholar
  34. 34.
    Favier A, Charreyre MT, Pichot C (2004) A detailed kinetic study of the RAFT polymerization of a bi-substituted acrylamide derivative: influence of experimental parameters. Polymer 45:8661–8674CrossRefGoogle Scholar
  35. 35.
    Arita T, Buback M, Vana P (2005) Cumyl dithiobenzoate mediated RAFT polymerization of styrene at high temperatures. Macromolecules 38:7935–7943CrossRefGoogle Scholar
  36. 36.
    Blas H, Save M, Boissi E, Sanchez C, Charleux B (2011) Surface-initiated nitroxide-mediated polymerization from ordered mesoporous silica. Macromolecules 44:2577–2588CrossRefGoogle Scholar
  37. 37.
    Singha S, Thomas MJ (2008) Dielectric properties of epoxy nanocomposites. IEEE T Dielect El In 15:12–23CrossRefGoogle Scholar
  38. 38.
    Ash BJ, Schadler LS, Siegel RW (2002) Glass transition behavior of alumina/polymethylmethacrylate nanocomposites. Mater Lett 55:83–87CrossRefGoogle Scholar
  39. 39.
    Tsagaropoulos G, Eisenberg A (1995) Dynamic mechanical study of the factors affecting the two glass transition behavior of filled polymers. Similarities and differences with random ionomers. Macromolecules 28:60–67Google Scholar

Copyright information

© Iran Polymer and Petrochemical Institute 2012

Authors and Affiliations

  • Mohammadreza Sarsabili
    • 1
  • Mehdi Parvini
    • 1
    Email author
  • Mehdi Salami-Kalajahi
    • 2
    • 3
  • Abbas Asfadeh
    • 4
  1. 1.Department of Chemical Engineering, Gas, and PetroleumSemnan UniversitySemnanIran
  2. 2.Department of Polymer EngineeringSahand University of TechnologyTabrizIran
  3. 3.Institute of Polymeric Materials, Sahand University of TechnologyTabrizIran
  4. 4.Department of Polymer Engineering and Color Technology Amirkabir University of TechnologyTehranIran

Personalised recommendations